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Abstract

Password Hashing, a technique commonly implemented by a server to protect passwords
of clients, by performing a one-way transformation on the password, turning it into another
string called the hashed password. In this paper, we introduce a secure password hash-
ing framework Rig which is based on secure cryptographic hash functions. It provides the
flexibility to choose different functions for different phases of the construction. The design
of the scheme is very simple to implement in software and is flexible as the memory pa-
rameter is independent of time parameter (no actual time and memory trade-off) and is
strictly sequential (difficult to parallelize) with comparatively huge memory consumption
that provides strong resistance against attackers using multiple processing units. It supports
client-independent updates, i.e., the server can increase the security parameters by updating
the existing password hashes without knowing the password. Rig can also support the server
relief protocol where the client bears the maximum effort to calculate the password hash with
a minimal effort from the server side. We analyze Rig and show that our proposal provides
an exponential time complexity against the low-memory attack.

1 Introduction

A password is a secret word or string of characters which is used by a principal to prove her
identity as an authentic user to gain access to a resource. Being secret, passwords cannot
be revealed to other users of the same system. In order to ensure the confidentiality of the
passwords even when the authentication data is somehow leaked from the server, passwords
are never stored in clear, but transformed into an illegible form and then stored. Specifically,
‘Password Hashing’ is the technique which performs a one-way transformation on a password
and turns it into another string, called the ‘hashed’ password. Strong password protection, i.e.,
a technique of password hashing that makes brute force attack on password guessing infeasible,
either in software or by using GPUs (Graphics Processing Unit), is essential to protect the user
security and identity. Thus any working password hashing scheme should fulfill this criteria.
Currently, the significant constructions for password hashing are PBKDF2 [15], Bcrypt [13] and
Scrypt [12]. All of these do not satisfy most of the necessary requirements mentioned at the
password hashing competition page [1]. PBKDF2 (NIST standard) consumes very less memory
as it was mainly designed to derive keys from a seed (password). Bcrypt uses fixed memory
(4KB) for its implementation. Scrypt is not simple (different internal modules) and not flexible
(time and memory parameters are dependent) and susceptible to cache timing attack (discussed
later in this report).

Specifically, the rate at which an attacker can guess passwords is a key factor in determining
the strength of the password hashing scheme. Current requirements [1] for a secure password
hashing scheme are the following:

• The construction should be slow to resist password guessing attack but should have a fast
response time to prove the authenticity of the user.

• It should have a simple design and should be easy to implement (coding, testing, debugging,
integration), i.e., the algorithm should be simple in the sense of clarity, concise with less
number of components and primitives and should not require too much prior knowledge
to understand.

• It should be flexible and scalable, i.e., if memory and time are not dependent then one
would be able to scale any of the parameters to get required performance.

• Cryptographic security [1]: The construction should behave as a random function (random-
looking output, one-way, collision resistant, immune to length extension, etc.).

• Resistant to GPU attack: A typical GPU has lots of processing cores but has limited
amount of memory for each single core. It is quite efficient for an attacker to utilize all the
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available processing cores with limited memory to run brute-force attack over the password
choices. Use of comparatively huge memory per password hash by the password hashing
construction can restrict the use of GPU. Therefore, the design should have large memory
consumption to force comparatively slow and costly hardware implementation that can
resist the GPU attack.

• Leakage Resilience: The construction should protect against information extraction from
physical implementation, i.e., the scheme should not leak information about the password
due to cache timing or memory leakage, while supporting any length of password.

• The construction should have the ability to transform an existing hash to a different cost
setting without knowledge of the password.

• It is good if the construction provides server relief technique where the client performs
most of the computations for password hashing and the server puts minimal effort with
minimal use of resources, to reduce the load of the server. This property needs a secure
protocol to maintain the security of the hash computation.

The most challenging threat faced by any password hashing scheme is the existence of cheap,
massively parallel hardware such as Graphics Processing Units (GPUs), Application-Specific In-
tegrated Circuits (ASICs) and Field-Programmable Gate Arrays (FPGAs). Using such efficient
hardware, an adversary with multiple computing units can easily try multiple different passwords
in parallel. To prevent such attempts we need to slow down password hash computation and
ensure that there is little parallelism in the design. One way to achieve this is to use a ‘Sequential
memory-hard’ algorithm, a term first introduced with the design of ‘Scrypt’ [12], a password
hashing scheme. The main design principle of Scrypt is that it asymptotically uses almost as
many memory locations as it uses operations to make the password-hash computation process
slow. Memory is relatively expensive, so, a typical GPU or other cheap massively-parallel hard-
ware with lots of cores can only have a limited amount of memory for each single core. Hence an
attacker with access to such hardware will still not be able to utilize all the available processing
cores due to the lack of sufficient memory and will be forced to have an (almost) sequential
implementation of the password hashing scheme.

In this document we propose ‘Rig’, a password hashing scheme which aims to address the
above mentioned requirements. ‘Rig’ is based on cryptographic (secure) hash functions and is
very simple to implement in software. It is flexible as the memory parameter is independent
of time parameter (no actual time and memory trade-off) and is strictly sequential (difficult
to parallelize) with comparatively huge memory consumption that provides strong resistance
against attackers using multiple processing units. It supports client-independent password hash
up-gradation without the need of the actual password. This feature helps the server to increase
the security parameters to calculate the password hash to reduce the constant threats of tech-
nological improvements, specifically in the field of hardware. ‘Rig’ provides protection against
the extraction of information from cache-timing attack and prevents denial-of-service attack if
implemented to provide server-relief technique. We analyze ‘Rig’ and show that our proposal
provides an exponential time complexity against memory-free attack. It gives the flexibility to
choose different functions for different phases of the construction and we denote the general
construction of ‘Rig’ as Rig [H1, H2, H3]. In this report we provide two variants of Rig [H1,
H2, H3]. A strictly sequential variant, Rig [Blake2b, BlakeCompress, Blake2b] and the other
variant, Rig [BlakeExpand, BlakePerm, Blake2b] which improves the performance by performing
memory operations in larger chunks.

The rest of the document is organized as follows. In section 2 we present the techniques
necessary for understanding the specification. This is followed by the introduction of significant
hardwares used as attack platform in section 3. The specification and design rationale of the
scheme is presented in sections 4 and 5 respectively. Subsequently, the implementation aspects
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and performance analysis are presented in sections 6 and 7. Finally, in section 8, we provide the
security analysis of the scheme. At the end we conclude the report with an intellectual property
statement, the bibliography, with changelog in appendix and acknowledgements.

2 Cryptographic preliminaries

The simple techniques explained below are the basis of our construction ‘Rig’:

2.1 Techniques

• Binary 64-bit mapping: It is a 64-bit binary representation of the decimal value. The
binary number

an−12n−1 + an−22n−2 + · · ·+ a0

is denoted as an−1an−2 · · · a0 where ai ∈ {0, 1} and n is the number of digits to the left of
the binary (radix) point. In our construction we use n = 64 and we denote binary64(x)
for 64-bit binary representation of the value x.

• Bit reversal permutation [8, 11] (br) : It is implemented to permute the indices of an
array of n = 2k elements where k ∈ N. We explain the steps of the permutation through
Algorithm 1 below.
The example of a bit reversal permutation applied on an array of m = 23 elements where
k = 3 and indices are 0, 1, · · · , 7 is given below.

br[000, 001, 010, 011, 100, 101, 110, 111] = [000, 100, 010, 110, 001, 101, 011, 111]

= br[0], br[1], br[2], br[3], · · · , br[7].

Algorithm 1: Bit reversal permutation (br)
Input: Indices of an array A of n = 2k elements where k ∈ N and

indices are: 0, 1, 2, · · · , n− 1.
Output: Permuted indices of array A as: br[0], br[1], br[2], · · · , br[n− 1]

1. for i = 0 to n− 1

2. (i)bink
= ik−1ik−2 · · · i1i0 =

∑k−1
j=0 2jij

3. . (i)bink
= k-bit binary representation of value i

4. br[i] =
∑k−1

j=0 2jik−1−j
5. return br[0], br[1], br[2], · · · , br[n− 1]

3 Attack platforms: Significant hardwares

According to Moore’s Law [14], the number of transistors on integrated circuits doubles approx-
imately every two years. This has indeed been the case over the history of computing hardware.
Following this law, hardware is becoming more and more powerful with time. This happens to
be the most prominent threat for existing password hashing schemes. Consequently, there is
a need to raise the cost of brute force attack by controlling the performance of the massively
parallel hardware available.

An important electronic circuit, Graphics Processing Unit (GPU), specifically designed
to rapidly manipulate and alter memory to accelerate the creation of the memory-intensive work
of texture mapping and rendering polygons. Modern GPUs are very efficient and their highly
parallel structure makes them more effective than general-purpose CPUs for algorithms where
processing of large blocks of data is done in parallel. An Application-Specific Integrated
Circuit (ASIC), is an integrated circuit (IC) which can be customized with memory chips to
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implement a dedicated design. An ASIC can not be altered after final design hence the designers
need to be certain of their design when it is implemented in ASIC. On the other hand, Field
Programmable Gate Arrays (FPGAs) are programmable integrated circuits and consist of
an array of logic elements together with an interconnected network and memory chips, providing
high-performance. A designer can test her design on an FPGA before implementing it on an
ASIC.

Both ASIC and FPGAs can be configured to perform password hashing with highly optimized
performance. The cost of implementation on FPGA is cheaper than ASICs if the number of
units of the hardware required is small. Therefore, one can easily use parallel FPGAs to increase
the rate of password guessing. RIVYERA FPGA cluster is an example of a very powerful and
cost optimized hardware. It can hash 3,56,352 passwords per second by using PBKDF2 (NIST
standard, Password Based Key Derivation Function 2) with SHA-512 and 512-bit derived key
length [7]. This high performance is possible on the FPGA because PBKDF2 does not consume
high memory for password hashing. Comparing FPGAs with GPUs (Graphics processing units),
the authors of [7] provide results of the same implementation on 4 Tesla C2070 GPUs as 1,05,351
passwords per second. ASIC is better than FPGA purely on performance in terms of number
of hashes per second. However, FPGA is preferable when cost is considered with the speed of
hashing. Following Moore’s law, the speed of hardware is likely to increase by almost a factor of
two in less than two years. However, as processor speeds continue to outpace memory speeds [9],
the gap between processor and memory performance increases by about 50 % per year [5]. Thus,
there is a need to minimize the effects of such high performance hardware. Hence, we need a
password hashing algorithm which consumes comparatively large memory to prevent parallel
implementation.

4 Specification

Our construction is described in Figure 1. Following is the step-by-step description of Algo-
rithm 2 which explains our construction ‘Rig’.

1. First we need to fix the following parameters:

• pwd = The user password of any length.

• s = The salt value of any length.

• n = The number of iterations required to perform iterative transformation phase.

• mc = The memory count from which the memory-cost is defined as: m = 2mc , i.e., m
denotes the number of items to be stored in the memory. The value of m is updated
as: mi+1 = 2×mi at each round.

• r = The number of rounds for the setup phase followed by iterative transformation
phase and output generation phase.

• l = The output length of the password hash.

• t = The number of bits retained from the hash output after truncation. Used with a
function trunct(x) = x� (|x| − t), where x is the hash output.

• Initialization phase: We map each of the above parameters, namely the values,
i.e., password length pwdl, salt length sl, iteration count n and the output length l
to 64-bit binary strings using binary64 mapping. We create x as the concatenation
(‖) of the these parameters and compute a value α as:

x = pwd ‖ binary64(pwdl) ‖ s ‖ binary64(sl) ‖ binary64(n) ‖ binary64(l);

H1(x) = α.

where H1 is the underlying hash function. We use α for further computations in the
setup phase.
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Figure 1: Graphical representation of the proposed construction.

• Setup phase: We initialize h0 with the value of π after the decimal point. We take
as many digits of π as desired to ensure that |h0| = |α|. The values h0 and α are used
to initialize two arrays k and a and further m− 1 values of the arrays are iteratively
calculated as shown in Figure 1. First t-bit output of each call of hash function H2

are stored in the array k.

The large number of calls to the underlying hash function are expected to have
different inputs by the use of different counter values. Note that H2 is the underlying
hash function.
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Rig: A password hashing scheme
Algorithm 2: Rig [H1, H2, H3] Construction

Input: Password (pwd), Password length (pwdl), Salt (s), Salt length (sl), No. of iterations (n),
Memory count (mc), No. of bits to be retained from hash output of the setup phase (t),
Output length (l), No. of rounds (r).

Output: l-bit hash value hr
∗ obtained after r rounds

1. . Initialization phase: generates α from password
2. Initialize: a random salt (s) of atleast 16-bytes, number of iterations (n),

value of memory count mc where m = 2mc , value t
3. x = pwd ‖ binary64(pwdl) ‖ s ‖ binary64(sl) ‖ binary64(n) ‖ binary64(l) . concatenation: ‖
4. α = H1(x) . H1 : underlying hash function
5. for round 1 to r
6. . Initialization of Setup phase: Creates two arrays k and a

where |k| = |a| = m where m = 2(round−1) × 2mc

7. h0 = initialized with the value of π after decimal, and |h0| = |α|.
8. a[0] = α⊕ h0, k[0] = trunct(h0)
9. for i = 1 to m

10. hi = H2(i ‖ a[i− 1] ‖ k[i− 1]) . H2 : underlying hash function
11. if i 6= m
12. a[i] = α⊕ hi
13. k[i] = trunct(hi) . retains the first t−bits of the hash output
14. . Initialization of Iterative Transformation phase
15. for i = 1 to n
16. for j = 1 to m
17. a[j − 1] = a[j − 1]⊕ h{im+j−1}
18. br[j − 1] = index value of array k obtained using

bit reversal permutation
19. . initialize a temporary array |ktemp| = |k|
20. ktemp[j − 1] = k[br[j − 1]]⊕ trunct(him+j−1)

21. him+j = H2((im+ j) ‖ a[j − 1] ‖ ktemp[j − 1])

22. k = ktemp
23. . Output generation phase
24. hround

∗ = (H3((n+ 1)m+ 1) ‖ h(n+1)m ‖ s ‖ binary64(m))
25. if round < r
26. α = hround

∗

2. Iterative transformation phase: This phase is designed to make repeated use of the
stored array values and to update them. We modify each element of the arrays a and k,
n-times where n is the number of iterations. Array a is accessed sequentially whereas array
k is accessed using bit reversal permutation as explained in Algorithm 1. We denote the
index of array k obtained by applying bit-reversal permutation as: br[j], 0 ≤ j ≤ m− 1.

3. Output generation phase: After execution of the setup phase and iterative transfor-
mation phase sequentially, we apply one more hash function, denoted by H3, to get the
output of each round. This output is used to reinitialize α for the computations of next
round. In the last round, this output of H3 becomes the password hash.
Note: The output is an l-bit value. The algorithm stores the output as the hashed pass-
word. Our construction allows for storing a truncated portion of the hash output as well.
If this is desired we can take one of the following two approaches.

(a) The user may run the complete algorithm as described above and truncate the final
output after r rounds to the desired length. This approach does not support client-
independent update.

(b) To support client-independent updates the user can choose a length for truncation
which is sufficient to claim brute-force security. Then append some constant value,
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we suggest the hexadecimal value of π after first 512-bits of decimal point. Take as
many digits as desired to make the output length of each round equal to the length of
α of the setup phase. This way one can reduce the storage requirement for password
hashes at the server.

5 Design rationale

Existing password hashing schemes are not simple and do not fulfill the necessary requirements
as discussed in section 1. We have tried to design a solution which overcomes the known disad-
vantages of existing schemes (PBKDF2 [15], Bcrypt [13] and Scrypt [12]). The primary concerns
against existing proposals are their complex design and their inefficiency to prevent hardware
threats. We have tried to strengthen our design by considering the necessary requirements as
mentioned in section 1.

1. Initialization phase: We have used concatenation of password, salt, 64-bit value of pwdl,
sl, n and l as input to increase the size of input. This resists brute force dictionary attack.

2. Setup phase: In this phase we initialize h0 with π, as we want to have a random sequence
and π is not known to have any pattern in the sequence of digits after the decimal point.
We generate the values that are required to be stored and repeatedly accessed throughout
the remaining phases. This ensures that a large memory is requirement for the password
hashing scheme which neutralizes the threat of using recent technological trends, such as
GPUs, ASICs etc. We use different counter values for each hash calculation to make all
hash inputs different. This reduces collisions and hence makes the output different.

For array k there is a flexibility to vary the bit storage by taking first t-bits of the hash
output where t is taken to be close to the hash-length but not equal to the hash-length.
This fulfills the demand of huge memory while at the same time ensures sequential hash
calculation and forces an attacker to compute the hash at run-time thus slowing him down.
Further, it also allows to extend the scope of implementation in that a low memory device
may keep very few bits of the hash values stored but may increase the number of iterations.
This ensures that ‘Rig’ can be implemented in resource constrained devices.

3. Iterative transformation phase: To make the storage requirement compulsory, this
phase progresses sequentially, accessing and updating all stored values at each iteration.
Here again, we use different counters for hash input for the same reason as mentioned
above. In this phase the memory access pattern is made password independent to reduce
the chance of cache timing attack which we have explained later in this section.

4. Output generation phase: This is the last phase of each round. We reuse the salt value
as input to make the collision attack difficult. Apart from that the output of each round
can be truncated to a desired length. This is optionally mentioned to handle the situations
when it is required to reduce the server storage per password.

The other important criteria taken into account in the design of the scheme are the following:

5. Simplicity and Flexibility: Symmetry (as setup phase and iterative transformation
phase follows similar structure) in the design of ‘Rig’ enhances the overall clarity of
the scheme. An earlier password hashing scheme Scrypt [12] uses PBKDF2 (internally
calls HMAC-SHA256) and ROMix (internally calls BlockMix and uses Salsa20/8). Unlike
Scrypt, ‘Rig’ uses only a single primitive (a cryptographically secure hash function). This
makes our scheme easier to understand and easy to implement (coding, testing, debugging
and integration).
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The design Scrypt [12] is not flexible enough as its time complexity: 4Nr and memory
complexity: Nr depend on each other, i.e., if we reduce the value of N (for RoMix function)
or r (for BlockMix), it automatically reduces the memory consumption. This is not the
case in our construction. In our design the time complexity is O(n+1)mr and the memory
complexity is O(m). Therefore, we have the flexibility that if we decrease the value of m
we can increase the number of iterations n and vice-versa. This flexibility in design choice
allows a user to scale any of these parameters to get the required performance.

Apart from these our scheme also provides the flexibility to choose different functions for
different phases of the construction. Therefore it is possible to design different variants of
Rig [H1, H2, H3] with different implementations of the functions H1 or H2 or H3.

6. Random output: Our scheme calls a hash function repeatedly. We use different coun-
ters for each of these hash calls to ensure that no input to the hash function is repeated.
The security of ‘Rig’ relies on the prevention of preimage and collision attacks against the
underlying hash function. Use of any state-of-the-art hash function (e.g. any finalist of
SHA-3 competition) ensures the security of our scheme. We use Blake2b [3] in demonstrat-
ing the performance of our scheme later in this paper, although any other hash function
could easily be used instead.

With the property of different input, different output and same input, same output, our
scheme mimics the Random Oracle Model. This provides theoretical justification of the
security of ‘Rig’.

7. Client-independent update: Our design supports the idea of client independent update
as explained in [8]. The idea explains how server can increase the security parameter of
a password hash without knowing the password of the client. For our construction this is
possible if we fix the value of n (number of iterations) and increase the number of rounds
r. Each round of the algorithm doubles the memory consumption m from the previous
round and hence increases the security parameter. This is possible because the output of
each round can be treated as the value α at the next round and then can easily follow
the Algorithm 2 to produce the output of the next round. The idea of client independent
update of the security parameter m is fulfilled by the following way. The value of m is
updated at each next round i + 1 (say) from its previous round i as: mi+1 = 2 × mi.
Taking m1 = 2mc this gives mi+1 = 2mc+i.

The overall procedure is: output of each round is the input to the next. Each round
gives full hash maintaining all requirements of a good password hashing technique. By
increasing the number of rounds, the scheme increases the required memory and time,
hence increases the security parameter without the interference of the client.

8. Resistance against cache-timing attack: In our construction we use bit-reversal per-
mutation to access the memory which is stored in an array k. This permutation is in-
dependent of the password used. If a password dependent permutation is used and if
the array can be stored in the cache while accessing the values, an attacker can trace
the access pattern observing the time difference in each access of the array index. This
helps the adversary to filter the passwords that follows similar memory access pattern and
to make a list of feasible passwords. Therefore, a password hashing scheme should have
password-independent memory access patterns and to follow this requirement we use bit
reversal permutation as in [8].

9. Server-relief hashing: Current requirement of a password hashing technique is that it
should be slow and should demand comparatively large memory to be implemented. But
this requirement may put extra load on server. Therefore we need a protocol to divide the
load between the client and the server. This can be achieved by using a challenge-response
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protocol, such as the ones commonly used in RFID authentication protocols. We use an
idea similar to [8] for server relief. This is explained below.
First the authentication server provides the salt to the client. The client performs the
initialization phase, setup phase and iterative transformation phase (see Algorithm 2),
and sends the end result to the server. The server calculates the output generation phase
and produces the final hash. This way the load of the server can be easily reduced.
Note: In this case, an attacker acting as a client, can repeatedly send some random data
without following the proposed algorithm to the server. The attacker can easily get the
access with a correct guess. But, the complexity of an attacker winning using this strategy
(i.e. using random guesses) will be equivalent to the brute-force complexity, i.e., 2n where
n is the output length of the underlying hash function. Therefore this is not a feasible
attack strategy.

6 Implementation aspects

This proposed construction for password hashing can be implemented efficiently on a wide range
of processors. However, the same implementation will require huge number of computations if
dedicated hardware such as ASIC or FPGA is used with limited memory.

Our design allows the flexibility to utilize less storage with increased number of calculations if
we truncate few bits of the intermediate hash computation and increase the number of iterations
n. This way, ‘Rig’ can be efficient on low memory devices.

We designed Rig to have a highly flexible structure. By changing the functions H1, H2 and
H3 (see Figure 1) we can completely change the overall design properties. From side channel
resistance to GPU or ASIC/FPGA resistance, any property can be achieved by the proper
selection of the above primitives. Therefore there can be multiple variants aimed at different
implementations or scenarios. As mentioned before, we describe the general construction of
‘Rig’ as Rig [H1,H2,H3], where we can design/choose the functions H1, H2, H3 for implementing
different variants of ‘Rig’.

In this report, we have included two variants of ‘Rig’. The detailed description with design
and implementations are described below.

1. Rig [Blake2b, BlakeCompress, Blake2b] This variant is strictly sequential. Full
Blake2b is used for H1 and H3 while the first round of the compression function of Blake2b
is used for H2 (and we call it BlakeCompress). We have removed the constants in the
‘G’ function of Blake2b as suggested by the Blake authors in [3] to improve the overall
performance.

This version does a large number of random reads and writes and as a result it is strictly
bounded by memory latency.

2. Rig [BlakeExpand, BlakePerm, Blake2b] This variant is designed to improve the per-
formance by performing memory operations in larger chunks. The functions H1 and H2 are
parallelized internally and the idea of handling larger chunk size improves the performance
significantly without changing the overall sequential nature and memory-hardness of ‘Rig’.
It also makes this variant of ‘Rig’ much more difficult to execute efficiently in GPUs and
FPGA/ASIC (explained in sections 6.4 and 6.5). We implemented the functions H1 as
‘BlakeExpand’ and H2 as ‘BlakePerm’. These functions are explained later. The function
H3 uses full Blake2b.

6.1 Design of Rig [Blake2b, BlakeCompress, Blake2b]

This strictly sequential variant follows the general construction of ‘Rig’ as explained in section 4.
The functions H1 and H2 implements Blake2b (full hash). The function H2 is implemented using
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first round of Blake2b compression function as described in the following section.

6.1.1 Design of the BlakeCompress function

In Figure 2 we graphically show the implementation of H2 as BlakeCompress. H2 takes 1024
bits input and initializes the initial state of Blake2b with this input. Then the eight G-functions
as defined in Blake2b are applied with an all zero input message of length 1024 bits. RFi

denotes the ith call to these eight G-functions. As we use the first round only, we show the
round as RF1 in Figure 2. The modified state after RF1 is then split in two equal halves and
xor’ed together to produce 512-bits of output. This choice of implementation is different from
the actual Blake2b in many ways. The actual Blake2b construction, shown in Figure 3, has
an initialization phase which initializes the starting state. A permutation of the message mi is
supplied as the input to each RFi for round i = 1 to 12. After 12 rounds, the finalization phase
performs feedforward xor’ing with output of RF12. This preserves the onewayness of the Blake2b
function. This feedforward xor’ing is omitted in our BlakeCompress implementation. This choice
of implementation reduces the time of hash computation and improves the performance. The
overall security is not compromised by this implementation (see section 8.2.1).

RF1

512 bits

512 bits

message (0)

BlakeCompress

x 512 bits1024 bits

y

Figure 2: Function H2 implemented as function BlakeCompress[x] = y, where input length of
x= 1024 bits and output length of y = 512 bits. RF1 is the first round of Blake2b compression
function. Input size of RF1 = 1024 bits.

6.2 Design of Rig [BlakeExpand, BlakePerm, Blake2b]

The optimized variant of ‘Rig’ uses an expansion function BlakeExpand to expand the state
and a compression function, BlakePerm to compress the state. Full Blake2b is used to hash
the output state after the iterative-transformation phase to obtain the final hash. The design
aspects are described below.

6.2.1 Design of the BlakeExpand expansion function

The BlakeExpand function is a very simple function which expands the input x to a fixed size
of 8KiB as shown in Figure 4. Technically any input length is allowed, but, in any practical
scenario the password and salt length do not exceed 8 KiB1. Recall that our design uses three

11 kibibyte (KiB) is 1024 bytes
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RF1

round-1 round-2 round-12

Finalization

Feedforward xor’ing

li

IV

RF2 RF12hi

message block: mi (1024 bits)

Blake2b(hi,mi, li) = hi+1

512 bits
hi+1I

Blake2b compression funtion defined as Blake2b(hi,mi, li)= hi+1 where
• hi is the 512 bits chaining value,
• mi is the ith message block and each mi is of length1024 bits
• li denotes the number of data bytes in m0,m1, · · · ,mi

• I denotes the initialization phase of Blake2b
• RFi denotes the ith call to the eight G-functions

Figure 3: Blake2b compression function

hash functions H1, H2 and H3. The function BlakeExpand is an instantiation of H1. The input
x passes through 128 individual instances of Blake2b (full hash) each appended by a counter as
xi = x ‖ i, for 0 ≤ i ≤ 127 and produces the output α = α0 ‖ α1 ‖ · · · ‖ α127 where each αi

is of length 512 bits, i.e., 64 bytes. This construction ensures that the output of the function
is random and the randomness depends solely on the cryptographic strength of Blake2b. Since
this function needs to be executed only once, it has negligible impact on the performance of the
overall ‘Rig’ construction.

6.2.2 Design of BlakePerm function

We provide the design considerations for the function BlakePerm before the description of the
design.

6.2.2.1 Design considerations for BlakePerm function

The DRAM memory latency is the limiting factor for the entire design of ‘Rig’. Initialization
and copying data takes over 70 percent of the total run-time. In order to improve the overall
performance one trivial optimization would be to increase the size of chunks in which the read
and write operations are performed. The latest high performance processor offerings from Intel
and AMD influenced many of the design decisions as they would be the most common target
platform. There are several design considerations like:

• L1 cache size: This is one of the major factors because the L1 cache has the lowest
latency of around 1-1.5ns (as few as 3 clocks). Therefore it is important that the work
piece (chunk) fits within this size for high performance in case of a compute intensive task.

• L1/L2/L3 cache line size: A typical modern processor has cache line size of 64 bytes.
Therefore working in multiple of 64 bytes with preferably aligned memory access is the
best strategy. The problem with working with other non-multiple sizes is that there
would be a lot of extra accesses and split loads and stores, which will dramatically reduce
performance in computation intensive tasks. The Blake2b compression function nicely
fits this requirement as it compresses 128 bytes to 64 bytes. The only other requirement
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Blake2b
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x1x

0

1

127
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‖

α

α127
x127

BlakeExpand [x] = α where α = α0 ‖ α1 ‖ · · · ‖ α127, xi = (x ‖ i) for 0 ≤ i ≤ 127

and x = pwd ‖ binary64(pwdl) ‖ s ‖ binary64(sl) ‖ binary64(n) ‖ binary64(l)

Figure 4: Function BlakeExpand

is an implementation detail for setting the proper aligned memory access while memory
allocation. As a result, in our implementation we have zero split load/stores.

• DRAM Latency: The memory latency is the primary limiting factor in algorithms
having random reads and writes. DRAM generally has latency values of 250+ clock cycles.
One strategy to get around this problem would be to perform reads and writes in larger
chunks. If the chunk size is large enough, the performance hit due to latency can become
significantly small. We tested against various sizes from 2 KiB to 64 KiB and observed
that 16 KiB is a good size; and it also fits the L1 cache. We have, as a result chosen chunk
size of 16 KiB for the H2 function.

6.2.2.2 Design of the BlakePerm function

The BlakePerm function is a compression function which compresses 16 KiB of data to 8 KiB.
It is a two step function as shown in Figure 5.

1. Compression It compresses the data using the first round Blake2b compression function.
A single such compression function compresses 128 bytes to 64 bytes, as a result we need
128 such functions to compress 16 KiB to 8 KiB.
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BlakePerm [S] =g, where input S = s0 ‖ s1 ‖ · · · ‖ s127 and output g = g0 ‖ g1 ‖ · · · ‖ g127
16 KiB input is equally divided in each 128 byte si.
RF1 denotes the first round of Blake2b compression function
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RF1

RF1

RF1

BlakePerm[S] = g

Figure 5: Function H2 implemented as function BlakePerm.

2. Permutation A permutation layer is needed to mix the compressed data so that the bit-
relations are spread evenly among the output bits over several rounds. Even though, any
random permutation can be chosen in such a scenario, a permutation of the form: output
Oi = (Ii×A+B) mod C was chosen, where 0 ≤ Ii ≤ 1023. The values A = 109, B = 512
and C = 1024 were chosen carefully after a series of experiments and diffusion tests. The
permutation works on words of 8 bytes at a time, as a result the total addresses would
be 8192/8 = 1024. The value B = 512 is the number by which the overall permutation
is cyclically rotated, it is half of the total size. The value of A is the most critical, even
though the only requirement for a permutation is that A should be co-prime with C. The
value of A strongly affects the overall characteristics and it needs to be carefully selected.
It takes around 5 rounds for all the output bits to be fully affected by a single change in
the input data. Since H2 function is sequentially applied hundreds of times, the function
BlakePerm produces complete avalanche and is cryptographically strong.

The overall procedure as shown in the Figure 5 can be explained as follows. The function
BlakePerm takes 16 KiB input S and equally divide it in 128 chunks s0 ‖ s1 ‖ · · · ‖ s127 of 128
byte each. Each input si passes through a single round Blake2b and produces 64 byte output
g′i which gives g′ = g′1 ‖ g′2 ‖ · · · ‖ g′127. The output g′ is then divided in 8 byte chunks indexed
from 0 to 1023. We apply the above described permutation on these 1024 indices. In Figure 5
we show that following the proposed formula, 8 bytes values at index 0 and at index 512 of I
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map to index 512 and index 0 of J respectively. This way, applying the permutation on each
index of I we get the actual output of BlakePerm denoted by g.

6.3 Parallelization

The design of ‘Rig’ is sequential and therefore it is impossible to parallelize the overall imple-
mentation. As a result we chose to parallelize the H1 and H2 functions. The most critical
function which affects the performance of the overall design is the H2 function. The optimized
variant Rig [BlakeExpand, BlakePerm, Blake2b] takes an input of 16 KiB and compresses it us-
ing 128 Blake2b compression functions. These 128 operations can be done in parallel to improve
the performance without affecting the overall sequential nature of ‘Rig’. H1 can similarly be
parallelized but it has negligible effect on the overall performance.

6.4 GPU resistance

We designed ‘Rig’ to have side-channel resistance, in pursuit of which we had to choose password-
independent memory access patterns. Such memory-access patterns are harder to protect against
GPU attacks. Modern GPU’s have very strict requirements for memory accesses and very small
cache sizes per core, as a result small random reads and writes dramatically reduce performance.

While designing H2 of Rig [BlakeExpand, BlakePerm, Blake2b], we chose a permutation
which causes reads and writes at significantly varying distances. Combined with the bit-reversal
permutation used in ‘Rig’ at the iterative transformation phase, the overall design is hard to
parallelize efficiently.

As the H2 function is pluggable, a new function can be easily added which performs small
password-dependent memory accesses and make the design significantly GPU resistant. But,
any such function would break the strict side-channel resistance.

6.5 ASIC/FPGA resistance

The ‘Rig’ construction is strictly sequential and is therefore non-parallelizable. The compression
function H2 (BlakePerm) as explained above, can be parallelized. But, the size of the inputs and
outputs (16 KiB to 8 KiB) which needs 128 parallel instances of Blake2b compression function
is too large for implementations with a large number of simultaneous ‘Rig’ instances.

Even though there can be a lot of possibilities of implementations with varying numbers of
compression functions, the overall space requirement still remains high.

The biggest problem in case of ASIC resistance would however come from the memory
latency and bandwidth of the DRAM needed for storage of the extremely large state (several
hundred megabytes to a few gigabytes). Even though the compression functions consume less
power because of their simplicity, the latency and very high memory bandwidth requirements
would make parallel implementations on ASIC prohibitively expensive. For example, for a single
instance of Rig [BlakeExpand, BlakePerm, Blake2b] having n = 4 (5 memory passes), and 1
GiB of state, the bandwidth on a standard PC exceeds 7.37 GiB/s as shown in Table 2.

7 Performance analysis

The reference implementation of ‘Rig’ has been done in C language on an Intel Core i7-4770
CPU with 16GB RAM at 2400 MHz. For the implementation of the single round Blake2b1 for
the function H2, we use AVX2 instructions. Specifically these AVX2 instructions are used to
parallelize the implementation of first round G-function of Blake2b. The following tables (Table
1 and Table 2) show the performance figure in terms of ‘Memory Hashing Speed’ and ‘DRAM
bandwidth’ for different values of parameter n (number of iterations).

1The idea of using reduced-round Blake2b is inspired from [6, 2].
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The reference implementation is now available at https://github.com/arpanj/Rig.

7.1 Suggested parameters

It is clear from the provided performance tables that, as expected, the memory hashing speed
for Rig [BlakeExpand, BlakePerm, Blake2b] is significantly higher than that of the strictly
sequential variant. Due to the wide spectrum of possible uses it is very difficult to suggest
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Figure 6: Performance of Rig (at different value of n) and Scrypt.

optimal values for parameters which suits every possible implementation scenario. However, we
can suggest values for common applications. For the parameter ‘n’ (number of iterations) we
suggest values higher than 3. This means that one should have at least four passes over memory
(including setup phase). For some scenarios this may be increased to make low memory attacks
prohibitively expensive.

The memory count value (mc) would depend strongly on the requirement and the actual
use-case. For a server client architecture where the clients are expected to have enough free
RAM, the value can be set to use few tens of megabytes to a few hundred megabytes. In a
mobile environment, this can be further reduced to allow for clients with smaller memories. In
the case the algorithm is to be used as a proof-of-work test, large memory requirements of a few
gigabytes combined with a large ‘n’ value can be set. It is important to keep ‘n’ high (as high
as 6-10) in case the overall memory cost is very small.

The performance of Scrypt (with suggested parameters [12]) and the results from Table 2 are
depicted in Figure 6. The graph shows the memory processing rate when consumable memory
to compute the password hash is fixed. The comparison shows that the memory consumption
of Scrypt is comparatively small with time. Scrypt takes approximately 6 seconds for 512 MB
memory while ‘Rig’ at n = 2 and n = 4 takes approximately 0.389 seconds and 0.613 seconds
respectively (data is taken from Table 2).

8 Security analysis
‘Rig’ satisfies the basic requirement of a non-invertible design for password hashing because of
the following reasons: (i) the iterative use of underlying primitive, the (secure) cryptographic
hash function and (ii) the initial hashing of password with random salt and other parameters
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----------------------------------------------------------------------------------

| 1) RIG [Blake2b, BlakeCompress, Blake2b] - Memory Hashing Speed (MiB/s) |

----------------------------------------------------------------------------------

| m => | 3.75 M| 7.5 M | 15 M | 30 M | 60 M | 120 M | 240 M | 480 M | 960 M |

----------------------------------------------------------------------------------

| n = 1 | 1382 | 931 | 857 | 827 | 808 | 827 | 831 | 836 | 836 |

| n = 2 | 919 | 745 | 681 | 684 | 663 | 675 | 681 | 674 | 659 |

| n = 4 | 566 | 428 | 383 | 383 | 381 | 388 | 388 | 391 | 392 |

| n = 6 | 394 | 294 | 268 | 270 | 267 | 275 | 272 | 258 | 270 |

| n = 8 | 323 | 250 | 211 | 210 | 210 | 212 | 210 | 201 | 209 |

| n = 10 | 267 | 199 | 174 | 173 | 170 | 173 | 170 | 174 | 170 |

----------------------------------------------------------------------------------

| Memory Bandwidth (GiB/s) |

----------------------------------------------------------------------------------

| n = 1 | 4.320 | 2.911 | 2.681 | 2.586 | 2.526 | 2.585 | 2.600 | 2.613 | 2.615 |

| n = 2 | 4.787 | 3.882 | 3.552 | 3.566 | 3.458 | 3.517 | 3.551 | 3.515 | 3.436 |

| n = 4 | 5.309 | 4.015 | 3.596 | 3.595 | 3.575 | 3.642 | 3.640 | 3.666 | 3.677 |

| n = 6 | 5.347 | 3.991 | 3.638 | 3.665 | 3.624 | 3.737 | 3.693 | 3.500 | 3.666 |

| n = 8 | 5.727 | 4.431 | 3.740 | 3.731 | 3.736 | 3.758 | 3.728 | 3.562 | 3.707 |

| n = 10 | 5.849 | 4.371 | 3.826 | 3.789 | 3.721 | 3.796 | 3.737 | 3.811 | 3.736 |

----------------------------------------------------------------------------------

n = Number of Iterations, Memory Passes = (n+1)

Auto generated Performance Figures for RIG. Average of 20 iterations.

Table 1: Performance of RIG [Blake2b, BlakeCompress, Blake2b]

----------------------------------------------------------------------------------

| 2) RIG [BlakeExpand, BlakePerm, Blake2b] - Memory Hashing Speed (MiB/s) |

----------------------------------------------------------------------------------

| m => | 8 M | 16 M | 32 M | 64 M | 128 M | 256 M | 512 M | 1 GiB | 2 GiB |

----------------------------------------------------------------------------------

| n = 1 | 1712 | 1724 | 1812 | 1868 | 1804 | 1840 | 1821 | 1820 | 1822 |

| n = 2 | 1450 | 1362 | 1377 | 1345 | 1307 | 1326 | 1315 | 1312 | 1318 |

| n = 4 | 932 | 873 | 858 | 846 | 829 | 845 | 835 | 838 | 833 |

| n = 6 | 657 | 621 | 621 | 621 | 617 | 618 | 606 | 610 | 619 |

| n = 8 | 500 | 477 | 500 | 485 | 481 | 490 | 485 | 489 | 489 |

| n = 10 | 428 | 397 | 403 | 398 | 399 | 402 | 404 | 404 | 402 |

----------------------------------------------------------------------------------

| Memory Bandwidth (GiB/s) |

----------------------------------------------------------------------------------

| n = 1 | 5.021 | 5.055 | 5.312 | 5.477 | 5.290 | 5.394 | 5.340 | 5.337 | 5.342 |

| n = 2 | 7.088 | 6.658 | 6.728 | 6.575 | 6.389 | 6.478 | 6.429 | 6.412 | 6.439 |

| n = 4 | 8.202 | 7.683 | 7.547 | 7.441 | 7.295 | 7.431 | 7.347 | 7.374 | 7.329 |

| n = 6 | 8.354 | 7.889 | 7.888 | 7.898 | 7.847 | 7.858 | 7.709 | 7.750 | 7.873 |

| n = 8 | 8.315 | 7.935 | 8.309 | 8.070 | 8.003 | 8.152 | 8.072 | 8.123 | 8.126 |

| n = 10 | 8.788 | 8.146 | 8.282 | 8.179 | 8.205 | 8.251 | 8.291 | 8.293 | 8.265 |

----------------------------------------------------------------------------------

n = Number of Iterations, Memory Passes = (n+1)

Auto generated Performance Figures for RIG. Average of 20 iterations.

Table 2: Performance of RIG [BlakeExpand, BlakePerm, Blake2b]
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and the final use of salt with chaining data. This makes recovering password from the hashed
output quite challenging.

Another important point is the simple, sequential and flexible design of the scheme. The
simplicity makes it easy to understand and sequential design makes the parallel implementation
hard and prevents significant speed up by the use of multiple processing units. Flexibility of the
design makes it unique from existing constructions.

8.1 Resistance against low memory attack

Attacker’s approach: An attacker running multiple instances of ‘Rig’ may try to do the calcu-
lations using smaller part of the memory (low memory) or almost no-memory (memory-free) to
reduce the memory cost per password guess. This approach may allow parallel implementations
of independent password guesses, utilizing almost all the available processing cores. This may
not give advantage over single password calculation but may increase the overall throughput
of password guessing as compared to the legitimate implementation of the algorithm. Next we
explain how feasible the low-memory or memory-free attack approach is, from the attacker’s
point of view.

Attack Scenario: Varying the required storage values. We emphasize that the goal
of analyzing the complexity of low memory attack is to show the approximate impact on the
overall processing cost to implement the algorithm ‘Rig’. Our construction needs to store two
arrays a and k as shown in Figure 1. Therefore we try to calculate the time complexity when
most of these array values are not stored. The cost of calculation for the values of array a are
dominated by the cost of array k. Therefore, for the simplicity of the evaluation we consider the
calculation cost for array k.

To vary the required storage at each iteration, we assume that we store t consecutive
values, 0 ≤ t ≤ m − 1, of both the arrays at iterative transformation phase. This assumption
is without loss of generality as we can easily calculate the index value of array k from the bit
reversal permutation explained in section 2. We also store the hash chaining values after each
iteration.

Effect of bit-reversal permutation on low memory scenario: We use the bit-reversal
permutation to shuffle the access of the array k. The effect of this yields exponential complexity
for the low memory scenario. This is because at every step we update the values of array k
and each updated value depends on all previous values. Let at iteration i, 1 ≤ i ≤ n, k[j],
0 ≤ j ≤ m− 1, is the required value that is not stored. Then we need to compute the value k[j]
at all previous i − 1 iterations and as the access was not sequential, it is difficult to calculate
the exact complexity. Hence, we compute the expected time complexity of a password hashing
for memory constrained scenario.

Low memory attack complexity: The algorithm ‘Rig’ can be computed with time com-
plexity O((n + 1)mr) and space complexity O(m) where 2m is the required number of stored
values, n is the number of iterations used and r is the number of rounds. An attacker us-
ing reduced memory storage (i.e., 0 to m − 2 stored values) will require a time complexity of
O(r ×mn+1) for a single password computation.

Analysis of low memory attack complexity For the legitimate implementation of the algo-
rithm, ‘Rig’, we need to store m = 2mc values of arrays a and k which are created at the setup
phase and repeatedly accessed and updated at each iteration i of the iterative transformation
phase (see Figure 1). Our goal is to analyse the extra cost incurred when we do not store the
array values, and calculate them on the fly at each iteration i where 1 ≤ i ≤ n. Specifically, we
analyze the time complexity by varying the possible storage (0 to m) of the array values. At each

17



iteration i of the iterative transformation phase, we apply bit reversal permutation (Algorithm 1)
on m indices of the array k which we denote by (1, 2, · · · ,m)→ (br[0], br[1], · · · , br[m− 1]) and
access the output of the permutation sequentially. It is easy to calculate this permutation for
all n-iterations in advance. We calculate the overall cost of password hashing depending on
whether a value of array k, let, k[br[j]], 0 ≤ j ≤ m − 1 is stored or not. As mentioned before,
to compute the complexity we store first t consecutive values of array k (where 0 ≤ t ≤ m− 1)
that are required for corresponding hash calculations at iterative transformation phase. We also
store the hash chaining values after each iteration except the last one, i.e., if the implementation
uses n-iterations then we store n− 1 such values. Figure 7 shows the graphical view of the low
memory scenario with an example where we store two consecutive values of the arrays required
for corresponding hash calculations, shown in red. Other m − 2 values that are calculated on
the fly and the corresponding hash calculations are shown in green. The general approach is
explained below.

We apply the law of total expectation to estimate the expected running time for a password
hashing, conditioning on the indices of the array k. This is because the calculation cost is very
high when we do not store the values of required indices of k and is the most influential pa-
rameter in the overall attack complexity. Therefore, we calculate the probability of a value at
a particular index of array k of being stored when we assume t consecutive values are stored.
We also calculate the probability of a value at an index not being stored when (m − t) values
are not stored. Further, in case a specific index of array k is not stored, then we estimate the
expected cost to evaluate this element at each iteration i.

We know that the total required indices are m for the array k. Out of these m values, we store
t values while the remaining m− t values are not stored. Therefore, the probability of a stored
and not-stored index is given by

Pr[a value of an index is stored ] =
t

m

Pr[ a value of an index is not stored ] =
m− t
m

For t = 2 we store only 2 values and m − 2 values are remained un-stored. Then, the above
probabilities are 2

m and m−2
m respectively as shown in Figure 7.

To apply the law of total expectation we apply the following concept.
At the setup phase we perform m hash calculations to store m values of array k. Therefore, for
these m calculations the complexity of the setup phase is O(m). In our construction, at each
iteration i, 1 ≤ i ≤ n, we access the values that are calculated at the previous iteration i−1, i.e.,
every next value is dependent on its previous value. Therefore at the first iteration of iterative
transformation phase, if we need to access an element of array k that is not stored, we need to
perform maximum m calculations of setup phase for that value. Therefore, at iteration i = 1 the
total cost of calculation is (m−t)×O(m) = O(m2) (as maximum m calculations are required for
all m− t not stored values). Similarly, at iteration i = 2, for all m− t not stored values of array
k it is required to calculate maximum m hashes of setup phase to generate the initial values.
Then it is required to check when those values were updated at i = 1. At i = 1, the maximum
calculations are: (m − t) × O(m) = O(m2), and similarly at i = 2 the total calculations are:
(m − t) × O(m2) = O(m3) and so on. This way we estimate the cost of calculation after each
iteration of iterative transformation phase shown in Figure 7 as ‘Complexity per phase’. Now
at each iteration we estimate the expected cost of calculation for each value k[br[j]] of array k
where 0 ≤ j ≤ m − 1. We denote the expected cost at iteration i as Ei. If a value is already
stored then the expected cost of calculation, i.e., E(cost when value is stored)=1 but if the value
is not stored then the expected cost will be the complexity till the previous iteration as the
required value is dependent on all its previous values. So the expectation at each iteration is as
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follows:
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(m− 2) not stored values are shown in green

Figure 7: Graphical representation of the calculation for the low memory complexity of ‘Rig’.

E1 =
m−1∑
j=0

Pr[ value at k[br[j]] is stored ]× [ cost of calculation when k[br[j]] is stored ]

+ Pr[ value at k[br[j]] is not stored ]× E[ cost of calculation k[br[j]] is not stored ]

=

m−1∑
j=0

( t
m

+
(m− t

m

)
×O(m)

)

E2 =
m−1∑
j=0

Pr[ value at k[br[j]] is stored ]× [ cost of calculation when k[br[j]] is stored ]

+ Pr[ value at k[br[j]] is not stored ]× E[ cost of calculation k[br[j]] is not stored ]

=

m−1∑
j=0

( t
m

+
(m− t

m

)
×O(m2)

)
· · · · · · · · · · · · · · · · · ·

En =
m−1∑
j=0

Pr[ value at k[br[j]] is stored ]× [ cost of calculation when k[br[j]] is stored ]

+ Pr[ value at k[br[j]] is not stored ]× E[ cost of calculation k[br[j]] is not stored ]

=

m−1∑
j=0

( t
m

+
(m− t

m

)
×O(mn)

)
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The total cost E after n−iterations:

E = m+ E1 + E2 + · · ·+ En

= m+
m−1∑
j=0

( t
m

+
(m− t

m

)
×O(m)

)
+

m−1∑
j=0

( t
m

+
(m− t

m

)
×O(m2)

)
+ · · ·

· · ·+
m−1∑
j=0

( t
m

+
(m− t

m

)
×O(mk)

)
+ · · ·+

m−1∑
j=0

( t
m

+
(m− t

m

)
×O(mn)

)

= m+ nt+
(m− t

m

)m−1∑
t=0

[O(m) +O(m2) + · · ·+O(mn)]

= m+ nt+
(m− t

m

)
O(mn+1)

Conditioning on the values of t we get the following complexities.

Case (i) : t = 0 implies the case of memory-free attack where the attacker does not use
any memory.

The expected cost is = m+O(mn+1) ≡ O(mn+1)

Repeating for r-rounds, the complexity of the attack is O(r ×mn+1).

Case (ii) : When 1 ≤ t ≤ m − 1, i.e. the case when the attacker stores some of the
memories.

The expected cost is =
(m− t

m

)
O(mn+1) ≡ O(mn+1)

Repeating for r-rounds, the complexity of the attack is O(r ×mn+1)

Case (iii) : t = m implies the legitimate implementation of the algorithm.

The complexity is = m+ nm ≡ O(n+ 1)m

Repeating for r-rounds, the complexity is O(n+ 1)mr.

Therefore, the memory-free attack complexity of ‘Rig’ is O(r×mn+1) where r is the number of
rounds.

8.2 Resistance against collision attack

In the design of ‘Rig’ (see Figure 8) we define three different functions, H1, H2 and H3. The
input of H1 is x where x is the concatenation of password, 64-bit value of password length,
salt, 64-bit value of salt length, 64-bit value of n (number of iterations) and 64-bit value of the
output length of password hash. The output of H1 is α. The function H2 signifies the repetitive
computation of function H2 at setup phase and iterative transformation phase (see Figure 1)
and generates the output c which is the output of iterative transformation phase. Therefore the
inputs of H2 are α, mc and n, where mc is the number of memory count and n, the number
of iterations used. Finally H3 takes the concatenation of a 64-bit value which is the function
of mc and n, output of H2, the value salt and 64-bit value of 2mc and produces the output of
password hash. Here we are considering round r = 1 (w.l.o.g). This is because, different values
of round, say r and r′ implies collision of H3.
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H1x
H1

α

H1

cH2

(mc, n)

H1H3 h∗

(mc, n)

Input x = pwd ‖ binary64(pwdl) ‖ s ‖ binary64(sl) ‖ binary64(n) ‖ binary64(l)
s = Salt, mc=memory count
n = no. of iterations

s ‖ binary64(2mc)

Figure 8: Rig[H1, H2, H3](x,mc, n, s), where H2 signifies repetitive use of H2.

Theorem 8.1. Collision for ‘Rig’ means

i. collision for H1, or

ii. collision for H2 when α 6= α′ and (mc, n) = (m′c, n
′) for two different password hash

computations, where mc = m′c = the memory count and n = n′ = number of iterations, or

iii. collision for H3.

Proof. We analyse the collision of ‘Rig’ with five possible cases as shown in Figure 9. Specifically,
we include all possible conditions that results in collision of H1 or collision of H2 or collision of
H3 which implies the overall collision of ‘Rig’.

CaseI. Collision Rig [H1, H2, H3] if (s,mc, n) = (s′,m′c, n
′) =⇒ Collision H1: The construction

of ‘Rig’ is such that if we get collision at H1 for two different inputs say, x and x′ and if
(s,mc, n) = (s′,m′c, n

′) then it implies collision of H2 which implies collision at H3, i.e.,
collision of Rig [H1, H2, H3].

CaseII. Collision Rig [H1, H2, H3] if (s,mc, n) = (s′,m′c, n
′) and α 6= α′ =⇒ Collision H2: For

two different inputs x, x′ if α 6= α′ then collision of H2 =⇒ collision of H3 when
(s,mc, n) = (s′,m′c, n

′) for respective inputs.

CaseIII. Collision Rig [H1, H2, H3] if (s,mc, n) = (s′,m′c, n
′), α 6= α′ and c 6= c′ =⇒ Collision

H3: For two different inputs x, x′ if α 6= α′ and c 6= c′ and if (s,mc, n) = (s′,m′c, n
′) then

collision Rig [H1, H2, H3] =⇒ collision H3, i.e., collision is due to H3.

CaseIV. Collision Rig [H1, H2, H3] if (s,mc, n) 6= (s′,m′c, n
′) =⇒ Collision H3: For two dif-

ferent inputs x, x′ if α 6= α′ and c 6= c′ and if (s,mc, n) 6= (s′,m′c, n
′) then collision

Rig [H1, H2, H3] =⇒ collision H3.

CaseV. Collision Rig [H1, H2, H3] if x = x′ and mc 6= m′c =⇒ Collision H3: For two different pass-
word hash calculations if mc 6= m′c for the same input x then collision of Rig [H1, H2, H3]
is for collision at H3.

Therefore these five cases describe how collisions of ‘Rig’ implies collision of H1 or H2 or H3.
Hence ‘Rig’ is collision resistant if H1 or H2 or H3 are collision resistant.
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H2 signifies repititive use of function H2

Figure 9: Five cases showing collisions for Rig [H1, H2, H3].

8.2.1 Instantiation of Rig [H1, H2, H3] for reference implementations

Collision resistance of Blake2b: For our reference implementation we use Blake2b. This
choice is motivated for several reasons. Blake2b is an improved version of Blake which is one
of the finalists of SHA-3 competition. Further, in terms of speed of hashing, it among the
most efficient hash functions in the SHA-3 competition. The significant differences between
Blake and Blake2b are that Blake2b uses fewer rounds (12 instead of 16), provides optimized
(in terms of speed) rotations in G-function, uses fewer constants (8 word constants instead
of 24). It is mentioned in [4] that, “Based on the security analysis performed so far, and on
reasonable assumptions, it is unlikely that 16 rounds are meaningfully more secure than 12
rounds”. Despite several years of cryptanalysis there are no significant attack on Blake. A
recent paper cryptanalyzing Blake2b is [10] shows that no collision or preimage attacks exist
against Blake2b. In fact, the best differential against Blake2b covers 3.5 rounds and has a
complexity of 2480. Therefore Blake2b is quite secure against collision and preimage attacks,
properties which we need in our design. For further details on attacks on compression function
and permutation of Blake2b, we refer the reader to [10]. Hence, the use of full round Blake2b is
enough to claim security of our construction against attacks utilizing collisions or preimages of
the underlying hash function.

• Rig [Blake2b, BlakeCompress, Blake2b]
Instantiation of H1 and H3 with Blake2b: We use full round Blake2b for the functions
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H1 and H3. We need collision resistance of both the functions for the security of ‘Rig’.
Use of Blake2b allows us to claim collision resistance of H1 and H3 [10].

Instantiation of H2 with BlakeCompress: The function H2 as shown in Figure 8
signifies the repetitive computations of the function H2 and inputs of H2 are α,mc, n.
Theorem 8.1 shows that collision ofH2 implies collision of ‘Rig’ only if H1 gives two distinct
outputs say, α, α′ for two different inputs x 6= x′ while corresponding values (mc, n) =
(m′c, n

′). We use first round of Blake2b compression function for the implementation of
H2 as shown in Figure 2.

For finalization phase we omit the feed-forward xor’ing as explained in Blake2b (see Fig-
ure 3). This choice of implementation is to improve the performance, but it does not
preserve the onewayness as there is no feed-forward xor’ing. In this case it would appear
that backward calculation is easy as H2 computation is then reversible. But due to the
design of ‘Rig’ it is very difficult to perform these backward computations as input values
of H2 are arrays a and k and depends on their values at previous iteration (see Figure 1).
Therefore, we only have the freedom to guess the values of array a and k to move back-
ward with reverse calculation for the last iteration, say i = n. Last iteration n will fix the
values of iteration (n− 1) as values are dependent. So we lose the freedom of guessing the
values from iteration (n− 1) and onwards and the backward computations become hard.
Hence omitting the feed forwardness can compromise the onewayness but the design of the
scheme provides no security loss. Now consider two distinct inputs of H2 as α = H1(x)
and α′ = H1(x

′) for x 6= x′.

H2 H2

1 2

(m+ 1) (m+ 2)

k[1]k[0] k[m-1]k[2]

α

t t t
t

h0
a[0] a[1] a[m-1]

H2

m

H2
H2

Setup
Phase:

α α

Figure 10: Setup phase uses m inputs generated from α.

Figure 10 shows that m = 2mc number of computations of H2 of the setup phase are
generated from these different α or α′ and it will be difficult to find collision everywhere
as values generated from two different inputs are usually expected to be different. The
values of array a and k are generated from α or α′ and influence further calculations.
Now, consider the last iteration of iterative transformation phase, i.e., the last layer of 2mc

computations of H2 as shown in Figure 11. All these H2 calls use single round Blake2b
and are generated from the same value α or α′. The input values influenced by α or α′ are
shown in red color and most of them will have nonzero difference. We can visualize this
scenario as similar to the Blake2b construction, instead of 12 rounds using 2mc rounds. Use
of comparatively large number of rounds provides enough security. Since we expect the
parameter mc ≥ 10, we will have 1024 rounds of Blake2b compression function. Therefore,
we can expect H2 to be collision resistant.

Therefore the choice of reduced round Blake2b does not affect the collision resistance of
the design.

• Rig [BlakeExpand, BlakePerm, Blake2b]
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Iteration i = n of H2

Input: α (512 bits)

t t t

k[br[2]]

t

round-1 round-2 round-2mc

i= n

(nm+ 2) (n+ 1)m0 0 0

RF1
RF1 RF1

(nm+ 1)

H2 implemented with the first round of Blake2b compression function denoted as RF1

and input of RF1=1024 bits

H2 H2 H2

k[br[0]] k[br[1]] k[br[m− 1]]

Figure 11: H2 implemented with RF1 at iteration i = n.

Instantiation of H1 with BlakeExpand and H3 with Blake2b: As explained in
section 6.2 we are using 128 individual instances of Blake2b (full hash) appended by a
counter for the function H1. Therefore a collision for H1 means collisions for each of the
128 calls to Blake2b. Therefore, collision resistance of H1 is obtained from the collision
resistance of Blake2b.
For the function H3 we implement Blake2b (full round), therefore H3 is collision resistant
if Blake2b is so.

Instantiation of H2 with BlakePerm: We implement each H2 with two step functions.
The first function, ‘Compression’ executes 128 instances of first round Blake2b compression
function and compresses total 16 KiB input to 8 KiB. The second function, ‘Permutation’
is a permutation that mixes the compressed 8 KiB output to spread the bit-relations evenly
among the output bits (see Figure 5).

We can provide similar arguments for the security of H2 as explained for the sequential
variant, Rig [Blake2b, BlakeCompress, Blake2b] above.
Hence, the above choice of implementation is expected to be secure against collision attack.

8.3 Resistance against length extension attack

The length extension attack on hash function works as follows. Hash functions work on blocks of
data iteratively. Let the initial value of a hash be IV =h0. A long message m = m0‖m1‖ . . . ‖ml

is processed as follows. First h1 = H(h0,m0) is computed and then the recursion hi+1 =
H(hi,mi) is used for 1 ≤ i ≤ l. The final output is hl+1. An attacker, without knowing the
intermediate message blocks, may simply append a new block m∗ and compute the hash value
of the message m′ = m0‖m1‖ . . . ‖ml‖m∗, by using one call to the hash function as H(hl+1,m

∗).
In our construction the password is not the only input to the hash function. If an attacker
attempts to append the password by any text, the value of α will change and it will affect all
subsequent blocks. Thus the length extension attack is not feasible in our design.

8.4 Resistance against cache-timing attack

As discussed in section 5, our construction accesses array k (see section 4) using a bit reversal
permutation which is password independent. Hence cache timing attack is not possible on our
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costruction.
Further, since the only primitive used in our scheme is a secure hash function, the security

of our scheme can be formulated in terms of the security of the underlying hash function. With
the current state-of-the-art we have the possibility of using SHA-3 implementation, or even any
of the other finalists of SHA-3 competition, which are resilient to side-channel attacks. Thus
our scheme resists cache timing attacks.

8.5 Resistance against denial-of-service attack

In computing, a denial-of-service (DoS) attack is an attempt to make a machine or network
resource unavailable to its intended users. This is possible by making the server busy injecting
lots of request for some resource consuming calculation. It is quite easy if the server uses some
slow password hashing technique for authentication. To handle such situations, the server-relief
technique can provide some relief to the server from heavy calculations as the client will do the
heavy part of the algorithm. This way we can reduce the chances of DoS attacks with slow
password hashing schemes.

9 Intellectual property statement

We state that the scheme proposed in this report, Rig, is and will always remain available
worldwide on a royalty free basis. Furthermore, we are unaware of any deliberately hidden
weaknesses and any patent or patent application that covers the use or implementation of the
submitted algorithm.
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Zimmermann. Evaluation of Standardized Password-Based Key Derivation against Parallel
Processing Platforms. In Sara Foresti, Moti Yung, and Fabio Martinelli, editors, ESORICS,
volume 7459 of Lecture Notes in Computer Science, pages 716–733. Springer, 2012.

[8] Christian Forler, Stefan Lucks, and Jakob Wenzel. The Catena Password Scrambler. Sub-
mission to Password Hashing Competition (PHC), 2014.

25



[9] Jim Gray and Prashant Shenoy. Rules of Thumb in Data Engineering. Technical Re-
port, MS-TR-99-100, Microsoft Research, Advanced Technology Division. December 1999,
Revised March 2000.

[10] Jian Guo, Pierre Karpman, Ivica Nikolic, Lei Wang, and Shuang Wu. Analysis of BLAKE2.
In Josh Benaloh, editor, Topics in Cryptology - CT-RSA 2014 - The Cryptographer’s Track
at the RSA Conference 2014, San Francisco, CA, USA, February 25-28, 2014. Proceedings,
volume 8366 of Lecture Notes in Computer Science, pages 402–423. Springer, 2014.

[11] Thomas Lengauer and Robert Endre Tarjan. Upper and lower bounds on time-space trade-
offs. In Proceedings of the 11h Annual ACM Symposium on Theory of Computing, April 30
- May 2, 1979, Atlanta, Georgia, USA, pages 262–277, 1979.

[12] Colin Percival. Stronger key derivation via sequential memory-hard functions. In BSDCon,
2009. http://www.bsdcan.org/2009/schedule/attachments/87_scrypt.pdf.

[13] Niels Provos and David Mazières. A Future-Adaptable Password Scheme. In USENIX
Annual Technical Conference, FREENIX Track, pages 81–91. USENIX, 1999.

[14] Robert R. Schaller. Moore’s law: past, present, and future. IEEE Spectrum, June 1997.

[15] Meltem Snmez Turan, Elaine Barker, William Burr, and Lily Chen. NIST: Special Pub-
lication 800-132, Recommendation for Password-Based Key Derivation. Computer Secu-
rity Division Information Technology Laboratory. http://csrc.nist.gov/publications/
nistpubs/800-132/nist-sp800-132.pdf.

10 Appendix

10.1 ChangeLog

From Rig-version 1.0 to Rig-version 2.0

This version of the report includes some changes suggested by mails on PHC discussion
forum. These changes are listed below.

• References [8, 11] are added for bit-reversal permutation of Algorithm 1 in section 2.

• We modified the construction slightly to handle the error of wrong usage of bit-reversal
permutation in the earlier version. Algorithm 2 (page no. 6) is accordingly modified, along
with its graphical description. Few more descriptive steps (line 19 to 22) are added in
Algorithm 2.

• Input of initialization phase is changed from x=pwd ‖ s ‖ binary64(n) ‖ binary64(l) to
x= pwd ‖ binary64(pwdl) ‖ s ‖ binary64(sl) ‖ binary64(n) ‖ binary64(l).

• On page no. 8 a sentence has been changed to: ”Therefore, a password hashing scheme
should have password-independent memory access patterns and to follow this requirement
we use bit reversal permutation, as in [8]”, (This is as per the suggestion of Mr. Cox).

• An optimized variant of ‘Rig’, Rig [BlakeExpand, BlakePerm, Blake2b] with its detailed
description is provided in Section 6.

• Section 7 includes a graph showing the comparison of ‘Rig’ with ‘Scrypt’ and also in-
cludes the performance figure of reference implementation of general ‘Rig’, instantiated
as Rig [Blake2b, BlakeCompress, Blake2b] and the optimized variant, Rig [BlakeExpand,
BlakePerm, Blake2b].
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• We have followed more descriptive approach to provide the security analysis of ‘Rig’ for
low-memory attack in section 8.1.

• Proof of collision resistance for ‘Rig’ is included in Section 8.2.

• Rectified the (minor) implementation issues pointed out by Mr. Cox in our reference ‘C’
implementation. The reference code is thus changed.

• The bit-reversal permutation is now implemented using the ‘Catena’ style (as per the
suggestion of Mr. Cox).

• Writing has been changed at a few places in the document, e.g., the note at the end of
point 9 of Section 5, the last but one paragraph of Section 1, etc.

• The reference implementation is now available at https://github.com/arpanj/Rig.

• An acknolwledgements section is added in the document.
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