
The Catena Password-Scrambling
Framework

Christian Forler∗ Stefan Lucks† Jakob Wenzel

cforler@posteo.de

stefan.lucks@uni-weimar.de

jakob.wenzel@uni-weimar.de

Version 3.2

September 29, 2015

∗The research leading to these results received funding from the European Research Council
under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant
Agreement no. 307952.

†A part of this research was done while Stefan Lucks was visiting the National Institute of
Standards and Technologies (NIST), during his sabbatical.



“Learn from yesterday, live for today,
hope for tomorrow. The important
thing is not to stop questioning.”

– Albert Einstein

2



Changelog

From Version 3.1 to Version 3.2

• adjusted the tweak description corresponding to the reference implementation (m
and |s| are now given by byte-sized values and describe the output length and the
salt length in bytes, respectively)

• updated performance values for parameter recommendations (cost parameter re-
main the same to preserve consistency)

• updated test vectors

• added pseudocode and description of BLAKE2b-1

• reference implementation now supports client-independent for keyed password hash-
ing and keyed server relief

• changed the link to the reference implementation

• renamed g0 and g to glow and ghigh

• other minor changes (introduction of variables, typos, . . . )

• introduced Catena-Axungia: an automated benchmark-tool to find optimal pa-
rameters for given constraints (see Section 3.4)

• introduced Catena-Variants: an implementation of Catena that allows exten-
sion and modifications (see Section 3.4)

From Version 3.0 to Version 3.1

• added test vectors for keyed password hashing (Appendix C)

3



From Version 2.1 to Version 3.0

• introduceCatena-Dragonfly as a specific instance of Catena-BRG andCatena-

Butterfly as a specific instance of Catena-DBG.

• introduce BLAKE2b-1, a round-reduced variant of BLAKE2b

• change the way the memory is initialized: (1) using two predecessors instead of
only one and (2) introducing a new function Γ, which updates the memory using
a memory-access pattern based on an arbitrary public input.

• introduce SaltMix as a particular instance of Γ.

• adding one invocation of the underlying memory-hard function flap with ⌈g0/2⌉

• added a new chapter called “Lessons Learned: The Tweak” (Chapter 9).

• some additional minor changes

From Version 2.0 to Version 2.1

Line 2 of Algorithm 4 in Chapter 5. Swapping the input parameters.

From Version 1.1 to Version 2.0

• removed the flawed proof for λ-memory-hardness of the (g, λ)-bit-reversal hashing
operation (based on the cryptanalysis by Biryukov and Khovratovich [9])

• Catena is now designated as a password-scrambling framework (PSF) instead of
a pure password scrambler

• introducing the name Catena-BRG: Catena instantiated with the memory-hard
(g, λ)-bit-reversal hashing operation (BRHg

λ)

• introducing a new instanceCatena-DBG:Catena instantiated with the λ-memory-
hard (g, λ)-double butterfly hashing operation (DBHg

λ)

• new recommendations for the usage of either Catena-BRG or Catena-DBG

depending on the required memory-hardness

• set version ID to 0xFF for Catena-BRG

• set version ID to 0xFE for Catena-DBG

4



From Version 1.0 to Version 1.1

• prepend the version ID byte, currently 0xFF, to the tweak (cf. Chapter 3 and
Section 8.3)

• swapped the two input parameters of the hash function H in Line 6 of Algorithm
4 in Chapter 3

5



Executive Summary

Catena is a novel and provably secure password-scrambling framework with cutting-
edge properties. Catena supports flexible usage in multiple environments. Catena

can also be used as a key-derivation function and for proofs of work/space.

Catena is flexible. An instantiation of Catena is defined by: (1) a cryptographic
primitive H, e.g., BLAKE2b [5], (2) a “reduced”primitive H ′ (typically a reduced-round
version of H, though H ′ = H is also possible), (3) an optional randomization layer Γ,
to harden the memory initialization, and (4) a “memory-hard” function F , using both
H and H ′, and with some graph-driven data flow.

Catena has tunable parameters. The garlic defines time and memory requirements for
Catena, increasing the pepper allows to increase the time without affecting the memory,
and the salt size determines the defense against precomputation attacks. Catena sup-
ports a server relief protocol to shift the effort (both time and memory) for computing
the password hash from the server to the client. Catena provides the client-independent
update feature allowing the defender to increase the main security parameters (garlic and
pepper) at any time, even for inactive accounts.

Catena provides two default instances. Catena is a framework. The user can plug
in any suitable H, H ′, and F . This may be too much too choose from, for the less expe-
rienced users, and this lacks a fixed target for the cryptanalysts. Thus, we recommend
two instances, with different choices for F . Catena-Butterfly runs in limited memory
and maximizes the work for lower-memory adversaries, Catena-Dragonfly maximizes
the amount of memory used.

Catena has a sound theoretical foundation. Both default instances have a sound and
elegant design given by a simple and well-understood graph-based structure. The data
flow in Catena-Butterfly is based on a stack of double-butterfly graphs, the data
flow in Catena-Dragonfly is based on bit-reversal graphs. The time-memory tradeoff
analysis follows the research from [30] and is based on the pebble game, which was –
mostly in the 1970s and 1980s – extensively used to study time-memory tradeoffs.

Catena is secure. We claim the following security properties of Catena: preimage
security (this important for most applications of password hashes), indistinguisha-
bility from random (important for key derivation), lower bounds on the time-
memory tradeoffs (for high resilience against massively parallel attacks with con-
strained memory, such as, e.g., when using GPUs), and resistance to side-channel
attacks, such as cache-timing and garbage collector attacks. Furthermore, Catena

supports keyed password hashing, i.e., the output of the unkeyed version of Catena

is encrypted by XORing it with a hash value generated from the userID, the memory
cost parameter, and the secret key.

6



Contents

1. Introduction 9

2. Preliminaries 14
2.1. The Pebble Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2. Properties and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3. Notational Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3. Catena – A Memory-Hard Password-Scrambling Framework 23
3.1. Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2. Functional Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3. Security Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4. Parameter Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4. Security Analysis of the Catena Framework 31
4.1. Password-Recovery Resistance. . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2. Pseudorandomness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5. Instances 33
5.1. SaltMix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2. Catena-Dragonfly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3. Catena-Butterfly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6. Security Analysis of Catena-BRG and Catena-DBG 40
6.1. Resistance Against Side-Channel Attacks . . . . . . . . . . . . . . . . . . 40
6.2. Memory-Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.3. Pseudorandomness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7. Design Discussion 44
7.1. Default instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.2. Justification of the Generic Design . . . . . . . . . . . . . . . . . . . . . . 46

7



Contents

8. Usage 48
8.1. Catena for Proof of Work . . . . . . . . . . . . . . . . . . . . . . . . . . 48
8.2. Catena in Different Environments . . . . . . . . . . . . . . . . . . . . . . 49
8.3. The Key-Derivation Function Catena-KG . . . . . . . . . . . . . . . . 50

9. Lessons Learned: The Tweak 52

10.Acknowledgement. 56

11.Legal Disclaimer 57

Bibliography 58

A. BLAKE2b-1 62

B. The Name 64

C. Test Vectors 65
C.1. Test Vectors for Catena-Dragonfly . . . . . . . . . . . . . . . . . . . . 65
C.2. Test Vectors for Catena-Butterfly . . . . . . . . . . . . . . . . . . . . 66
C.3. Test Vectors for Catena-Dragonfly-Full . . . . . . . . . . . . . . . . 66
C.4. Test Vectors for Catena-Butterfly-Full . . . . . . . . . . . . . . . . . 67
C.5. Test Vectors for Keyed Catena-Dragonfly . . . . . . . . . . . . . . . . 68
C.6. Test Vectors for Keyed Catena-Butterfly . . . . . . . . . . . . . . . . 69
C.7. Test Vectors for Keyed Catena-Dragonfly-Full . . . . . . . . . . . . 70
C.8. Test Vectors for Keyed Catena-Butterfly-Full . . . . . . . . . . . . . 71

D. Illustration of a BRG3
4 72

E. Illustration of a DBG3
2 73

8



Chapter 1
Introduction

This document introduces Catena, our submission to the Password Hashing Competi-
tion (PHC). We elaborate on the requirements for password hashing in general, and on
some of the specific design choices for Catena.
Passwords1 are user-memorizable secrets that are commonly used for user authenti-

cation and cryptographic key derivation. Typical (user-chosen) passwords often suffer
from low entropy and can be attacked by trying out all possible candidates in order of
likelihood, until the right one has been found. In some scenarios, when a password is
used to initiate an interactive session, the security of password-based authentication and
key derivation can be enhanced by dedicated cryptographic protocols defeating “off-line”
password guessing, (see, e.g., [6] for an early example). Otherwise, the best protection
is given by performing “key stretching”.

Key Stretching. Let X be a password with µ bits of entropy, and let H be a cryp-
tographic hash function. An adversary, who knows the password hash Y1 = H(X),
can expect to find X by trying out about 2µ−1 password candidates. To slow down
the adversary by a factor of 2σ, one iterates the hash function 2σ times by computing
Yi = H(Yi−1) for i ∈ {2, . . . , 2σ} and then uses Y2σ as the final password hash. There
are variations of this approach, but iterating H is the core idea behind the majority of
current password scramblers, such as md5crypt [28] and sha512crypt [16]. This forces
the adversary to call the hash function 2σ+µ, rather than 2µ times. But the defender
is also slowed down by 2σ. Note that the computational time for scrambling a pass-
word is bounded by the tolerance of the user, and so is the choice of the parameter σ.
Thus, there is no protection against password-cracking adversaries for users with weak
passwords2. Furthermore, in the rare case that a user has a high-entropy password (say,
µ > 100), key stretching is unnecessary. But, for users with mid-entropy passwords, key

1 In our context, “passphrases” and “personal identification numbers” (PINs) are also “passwords”.
2A study from 2012 reports a min-entropy µ < 7 bit for typical user groups [11]. For any such group,
an adversary trying the group’s most frequent password succeeds for ≈ 1% of the users.

9



1. Introduction

stretching can hold the balance in terms of security. Thus, we define the basic conditions
for any password scrambling function PS are as follows:

(1) Given a password pwd , computing PS(pwd) should be “fast enough” for the user.

(2) Computing PS(pwd) should be “as slow as possible”, without contradicting (1).

(3) Given y = PS(pwd), there must be no significantly faster way to test q password
candidates x1, . . . , xq for PS(xi) = y than by actually computing PS(xi) for each
candidate xi.

Memory-Demanding Key Stretching. The established approach of performing key
stretching by iterating a conventional primitive many times has become less useful over
the years. The reason is an increasing asymmetry between the computational devices the
typical “defender” is using, and those devices available for potential adversaries. Even
without special-purpose hardware, graphical processing units (GPU) with hundreds of
cores [35] have become a commodity. By making plenty of computational resources
available, GPUs are excellent tools for password cracking, since each core can try another
password candidate, and all cores are running at full speed. However, the memory – and,
especially, the fast (“cache”) memory – on a typical GPU are about as large (at least
by the order of magnitude) as the memory and cache on a typical CPU as used by
typical defenders. Thus, the idea behind a memory-demanding password scrambler is to
perform key stretching with the following requirements:

(4) Scrambling a password in time T needs S units of memory (and causes a strong
slow-down when given less than S units of memory).

(5) Scrambling p passwords in parallel needs p ·S units of memory (or causes a strong
slow-down accordingly with less memory).

(6) Scrambling a password on p parallel cores is not (much) faster than on a single
core, even if S units of memory are available.

Note that a defender can determine S and T by selecting appropriate parameters.

Simplicity and Resilience. The first published memory-demanding password scrambler
(implicitly based on the six conditions above) is scrypt [38].
Nevertheless, two aspects of scrypt did trouble us: First, scrypt is quite complex

since it combines two independent cryptographic primitives (the SHA-256 hash function
and the Salsa20/8 core operation) and four generic operations (HMAC, PBKDF2, Block-
Mix, and ROMix). Second, the data flow of the ROMix operation is data-dependent, i.e.,
ROMix reads data from password-dependent addresses. This renders ROMix, and thus
scrypt, vulnerable to cache-timing attacks [24]. Moreover, we have shown in [24] that
scrypt is vulnerable against garbage-collector attacks, i.e., a malicious garbage collector

10



1. Introduction

can obtain internal states of the algorithm from memory fragments, which allows to test
password candidates in a highly efficient manner (see Section 2.2).
There is a growing amount of resarch on cache-timing attacks, mostly with a focus

on recovering secret keys by measuring which entries in an S-box table have been read.
See [27] for a recent example. We believe that many of the techniques in this context
are applicable to the internal memory of password-hashing functions. To the best of our
knowledge, practical exploits for garbage-collector attacks have not been studied much,
so far.
In any case, both cache-timing and garbage-collector attacks are frightening risks,

which we want both to avoid. Therefore, our challenge was to design a new memory-
demanding password scrambler PS which complies to the six previously stated properties
and also the following additional properties:

(7) Easy to analyze.

(8) Resilient to cache-timing attacks.

(9) Resilient to garbage-collector attacks.

To accomplish Property (7), we focused on a single generic operation, using a single
cryptographic primitive. The analysis should prove its expected security properties
under well-established assumptions and models for the underlying primitive. To satisfy
Property (8), one has to ensure that neither the control flow nor the data flow depend
on secret inputs, e.g., the password. One way to satisfy Property (9) is to read and
(over)write the memory a couple of times during the scrambling operation. A malicious
garbage collector will then learn only the information written at the end of the scrambler
operation.

Desired Flexibility Properties. The current generation of password scramblers is rather
inflexible and we would like future password scramblers to support the following features:

• server relief : the option to shift the main memory and time effort from a authen-
tication server to the client, without burdening the server,

• pepper and garlic: security parameters to adjust time and memory requirements,

• client-independent update: adjust (increase) the security parameters, even without
knowing the password.

To the best of our knowledge, the idea for client-independent updates has been introduced
in [24].

Design Choices for Catena. Informally, Properties (1)-(6) can be translated into the
rule of thumb “fast enough on the defender’s machine” and “as slow as possible on the
adversaries’ machines”. This is what any password scrambler is trying to achieve – and

11



1. Introduction

the design of a password scrambler depends on the designers’ understanding of these
machines. Our understanding of the defender’s machine is straightforward: a typical
CPU, as it would be running on a server, a PC, or a smartphone. While this still leaves
a wide range of different choices open, we anticipate a limited number of cores and a
certain amount of fast memory, i.e., cache. On the other hand, making assumptions
on the computational power of adversaries may seem like a futile exercise since they
will actually use all computational power within their budget, like commodity hardware
(CPUs and GPUs), reprogrammable hardware (i.e., FPGAs) and non-reprogrammable
hardware (ASICs). Catena has been designed as defense with all these adversaries in
mind, with the highest priority on commodity hardware, followed by reprogrammable
hardware. However, the second-round tweak has, in part, been motivated by the desire to
improve resistance against adversaries using expensive non-reprogrammable hardware.
While our concrete proposal suggests to use BLAKE2b for H and BLAKE2b-1 (one

round of BLAKE2b including finalization) for H ′, Catena enables the defender to
actually choose any strong hash function H and a reduced hash function H ′ that run
well on its machine. The freedom to change H and H ′ has the additional side effect
of frustrating well-funded adversaries who use expensive non-reprogrammable hardware:
For every defender with different H and H ′, they would have to buy new hardware.
Note that Catena is a composed cryptographic operation, based on a cryptographic

hash function. An alternative would have been some new primitive with the structure
of Catena. Section 7.2 elaborates on the reasons why we avoided that alternative.

Specific Choices for Catena Related to PHC. Beyond meeting Properties (1)-(9)
and support for our desired flexibility properties, the design of Catena also meets the
requirements of the PHC [4]:

• Support passwords of any length between 0 and 128 bytes.

• Support salts of 16 bytes.

• Provide at least one cost parameters to tune time and/or space usage.

• Produce (but not limited to) 32-byte outputs.

• Support of optional inputs such as a personalization string, a secret key, or any
application-specific parameter.

Actually, Catena allows to choose paswwords and salts of arbitrary length. Further-
more, the maximum length of the password hash value depends on the underlying hash
function. The the time and/or memory usage can be adjusted:

• Keeping bits of the salt secret (pepper).

• Increasing the memory-cost parameter (garlic).

• Increasing the number of stacks of the inner structure (λ).

12



1. Introduction

Furthermore, Catena is designed to fulfill the following security properties:

• Standard cryptographic security: preimage resistance, collision resistance, immu-
nity to length extension, infeasibility to distinguish outputs from random.

• High computational costs for massively parallel cracking devices with limited amount
of fast memory, e.g., GPUs, low-cost ASICs, and FPGAs.

• Resilience against side-channel attacks, such as cache timing.

We present a comprehensive security analysis to show that Catena provides the desired
cryptographic security.

Outline. the remainder of the paper is structured as follows. Chapter 2 lists the nec-
essary preliminaries, definitions, and fundamental password-scrambling properties we
use throughout this paper. Chapter 3 provides the specification of Catena, our new
password-scrambling framework, as well as our parameter recommendations for the PHC.
Furthermore, we discuss functional and security properties of Catena. In Chapter 4,
we analyze the Catena framework in terms of its preimage security and pseudoran-
domness. In Chapter 5 we introduce two instances of Catena: Catena-Dragonfly

and Catena-Butterfly . In Chapter 6, we discuss their security properties in terms
of memory-hardness, pseudorandomness, and resistance against side-channel attacks.
Chapter 7 contains our design rationing. The usage of Catena for the proof of work
scenario, a discussion about Catena in different environments, and its application as
key-derivation function are given in Chapter 8. Chapter 9 summariezes the proposed
modifications for the second-round tweak. We conclude with an acknowldegement, a
legal disclaimer, the bibliography and some appendices.

13



Chapter 2
Preliminaries

In this section we describe a technique called Pebble Game, which will help to understand
the proofs of our underlying graph-based structures presented in [30]. Furthermore, we
introduce necessary definitions and notations used throughout this paper. Note that
we often refer Catena to one specific instance than to the generic framework. In this
situations it is meant that the considered property holds for all presented instances.

2.1. The Pebble Game

The pebble game is a well-known method from theoretical computer science to analyze
time-memory tradeoffs for a restricted set of programs. The restrictions are as follows:

1. The programs must be “straight-line programs”, i.e., without any data-dependent
branches. Thus, neither conditional statements (if-then-else) nor loops are allowed,
except when the number of loop-iterations is a fixed number, since one can remove
such loops by “loop unrolling”.

2. Reading to or writing from a certain element vi of an array v0, . . . , vn−1 in memory
is only allowed if the index i is statically determined a priori – and thus, indepen-
dent from the input.

Programs following these two restrictions can be represented by a directed acyclic graph
(DAG, see Definition 2.1) of vertices and directed edges, where vertices without ingoing
edges represent inputs, and all remaining vertices represent the result of an operation.

Definition 2.1 (Directed Acyclic Graph (DAG)). Let Π(V , E) be a directed
graph consisting of a set of vertices V = (v0, v1, . . . , vn−1) and a set of edges
E = (e0, e1, . . . , eℓ−1). Π(V , E) is a directed acyclic graph iff it does not contain
any directed cycle, i.e., a path from a node v ∈ V to itself.

14



2. Preliminaries

On the other hand, edges represent the data flow of an operation, i.e., the operation
r ← (x ⋄ y) ◦ z would be represented by three edges x → r, y → r, and z → r.
While the pebble game is defined for vertices with fan-in ≤ d, for some constant d on
operations with at most three inputs, i.e., “(x ⋄ y) ◦ z”, implying that all vertices within
the DAG have a fan-in of at most 3. Then, “⋄” and “◦” can be any operation which take
two inputs x and y or (x ◦ y) and z, respectively, and generate one output r, such as
(x ⋄ y) ◦ z = H((x⊕ y) || z). Moreover, for any two vertices s 6= s′, with s← x ⋄ y and
s′ ← x′ ⋄ z′, the symbol “⋄” can represent different operations, depending on the target
s resp. s′. The same holds for the symbol “◦”.

Playing the Pebble Game. The background for the pebble game is to determine a
time-memory tradeoff for a given algorithm by pebbling a predetermined vertex within
the corresponding DAG, considering a certain amount of available memory, i.e., number
of available pebbles. Initially, there is a heap of free pebbles, and no pebbles on the
DAG. The player performss a number of certain actions until a predefined output vertex
has been pebbled. The following two actions are possible:

Move: If a vertex v is unpebbled and all vertices wi with edges wi → v are pebbled,
perform either one of the following two operations:

1. Put a pebble from the heap onto v (all wi remain pebbled).

2. Move a pebble from one of the wi to v (all wj with j 6= i remain pebbled).

Collect: Remove one pebble from any vertex. The pebble goes back into the heap.

Note that a“move” is either a“read input”operation (if it applies to an input vertex, i.e.,
one without any edges wi → v) or the actual computation of a value. The computational
time for a straight-line program is then given by counting the number of moves, whereas
the required memory is given by the maximum number of pebbles simultaneously placed
on the DAG.

Time-Memory Tradeoffs. Hellman presented in [26] the approach to trade memory/s-
pace S against time T in attacking cryptographic algorithms, i.e., he has introduced
the idea of a time-memory tradeoff (TMTO) in terms of generic attacks. Hence, we can
assume that an adversary with access to this algorithm and restricted resources is always
looking for a sweet spot to minimize S ·T . To analyze the effort for a given adversary, one
needs to choose a certain model for studying the TMTO. In 1970, Hewitt and Paterson
[37] introduced the pebble game as a method for analyzing TMTOs on directed acyclic
graphs, which became an important tool for that purpose (see [41–43, 45, 46]). The
pebble game has been occasionally used in cryptographic context (see [22] for a recent
example).
Figure 2.1 presents a simple example. In spite of its simplicity, it reveals an interesting

tradeoff between space S and time T , where S denotes the number of pebbles, and T

15



2. Preliminaries

ab

const

f(a, b)

Figure 2.1.: Directed acyclic graph for f(a, b) = (a ◦ const) ◦ const) ◦ b) ◦ (a ◦ const).

the number of moves: Note that the value “const” denotes a fixed value which is always
in the memory, i.e., one gets this vertex for free.
With S ≥ 3, time T = 6 is sufficient for pebbling the output vertex. With less than

three pebbles, this needs more time. The reason is that common subexpressions cannot
be stored, any more, but must be recomputed. The graph can still be pebbled with
S = 2 and T = 8. The graph cannot be pebbled with S = 1.

The Pebble Game and Password Scramblers. Note that the upper and lower bounds
proved in [30] highly depend on the operation “◦”. Recall that the computation of
x = y ◦ z can represent different operations, depending on the target x, and “time” is
just the total number of such operations. If all “◦”-operations take approximately the
same time, upper bounds (“given space S, one can pebble the graph in time T”, for
some specific T and S) allow to meaningfully estimate the computational effort of the
defender. However, the security of the defender depends on the non-existence of efficient
algorithms for the adversary. Such non-existence results are lower bounds (“given space
S, it is impossible to pebble the graph in less than time T”). But the lower bounds are
only applicable if the computations of an adversary follow the DAG. Depending on the
operation “◦”, this may be the case, or not.
With algebraic operations, the lower bound usually collapses. For example, let “◦”

denote the integer addition “+”, or the XOR-operation “⊕”. The function f(a, b) from
Figure 2.1 degenerates to f(a, b) = 2a + 3const + b in the case of the addition, and
b⊕ const for the XOR. With the addition, the function f can be computed with S = 2
pebbles in less then eight operations, with the XOR, f(a, b) can even be computed with
S = 1. On the other hand, if one models the operation x ◦ y as a call to a random oracle
H(x || y), there is no alternative way to compute f . Since it is well-established practice in
cryptography to instantiate random oracles by hash functions, Catena instantiates its
internal operation by a strong cryptographic hash function, where we suggest BLAKE2b

16



2. Preliminaries

as default primitive.
Of course, there is a middle-ground between using a simple algebraic operation on

one side, and an entire cryptographic primitive on the other side. BLAKE2b consists of
several rounds, where each round is a cunning composition of xor operations, additions,
and bit-wise rotations. If we use such an operation for “◦” (or in general, if we use
the internal round or step operations of a cryptographic primitive), the relevance of
the lower bounds is completely unclear, and finding “shortcut attacks” with improved
time-memory tradeoffs becomes a new challenge for cryptanalysts. We elaborate on this
approach, which would turn a password scrambler into a cryptographic primitive of its
own right, in Section 7.2.

2.2. Properties and Definitions

Below, we describe and define the desired properties of a modern password scrambler.
Note that we refer to the garlic in general by g (or when used to describe a particular
graph instance) and only differ between glow and ghigh when necessary.

Memory-Hardness. To describe memory requirements, we adopt and slightly change
the notion from [38]. The intuition is that for any parallelized attack, using b cores, the
required memory per core is decreased by a factor of 1/b, and vice versa.

Definition 2.2 (Memory-Hard Function). Let g denote the memory cost fac-
tor. For all α > 0, a memory-hard function f can be computed on a Random Access
Machine using S(g) space and T (g) operations, where S(g) ∈ Ω(T (g)1−α).

Thus, for S · T = G2 with G = 2g, using b cores, we have
(

1

b
· S

)

· (b · T ) = G2.

A formal generalization of this notion is given in the following definition.

Definition 2.3 (λ−Memory-Hard Function). Let g denote the memory cost
factor. For a λ−memory-hard function f , which is computed on a Random Ac-
cess Machine using S(g) space and T (g) operations with G = 2g, it holds that

T (g) = Ω

(

Gλ+1

S(g)λ

)

.

Thus, we have
(

1

b
· Sλ

)

· (b · T ) = Gλ+1.

Remark. Note that for a λ-memory-hard function f , the relation S(g) · T (g) is always
in Ω(Gλ+1), i.e., it holds that if S decreases, T has to increase, and vice versa.

17



2. Preliminaries

λ-Memory-Hard vs. Sequential Memory-Hard. In [38], Percival introduced the no-
tion of sequential memory-hardness (SMH), which is satisfied by his password scrambler
scrypt. Based on this notion, an algorithm called sequential memory-hard, if no adver-
sary has a computational advantage from the use of multiple CPUs, i.e., using b cores
requires b times the effort for a single core. It is easy to see that, in the parallel compu-
tation setting, SMH is a stronger notion than that of λ-memory-hardness (λMH). Thus,
SMH is a desirable goal when designing a memory-consuming password scrambler. In
this section, we discuss why our presented password scrambler Catena satisfies at most
λMH instead of SMH, without referring to details of Catena, which are presented in
Chapters 3 and 5.
Note that a further goal of our design was to provide resistance against cache-timing

attacks, i.e., all instances of Catena should satisfy a password-independent memory-
access pattern. This goal can be achieved by providing a control flow which is inde-
pendent of its inputs or at least independent of its secret inputs. If none of the inputs
determine the control flow, Catena can be seen as a straight-line program, which on
the other hand can be represented by a directed acyclic graph.
Usually, a DAG can be computed (at least partially) in parallel. Assuming that one

has b processors to compute a graph Π(V , E), one can partition Π(V , E) into b disjunct
subgraphs π0, . . . , πb−1. Let Ri,j denote the set of crossing edges between two subgraphs
πi and πj . If the available shared memory units are at least equal to the order of Ri,j ,
one can compute πi and πj in parallel. More detailed, in the first step one computes each
vertex corresponding to a crossing edge and stores them in the global shared memory.
Next, both subgraphs can be processed in parallel by accessing this memory. It follows
that if the available memory is

b−1
∑

i=0

b−1
∑

j=0

|Ri,j |,

then, one can compute all subgraphs π0, . . . , πb−1 in parallel. Due to the structure of
Catena (or more specifically, the main structure of our proposed instances) one can
always partition its corresponding DAGs into such subgraphs and therefore, Catena

can be at least partially computed in parallel, which is a contradiction to the definition
of sequential memory-hardness. Thus, we introduced the notion of λMH as described
above, which is a weaker notion in the parallel computing setting but a stronger notion
in the single-core setting. To the best of our knowledge, Catena is the first password
scrambler which satisfies both to be memory-consuming (by satisfying at least λMH)
and providing resistance against cache-timing attacks.

Password Recovery (Preimage Security). For a modern password scrambler, it should
hold that the advantage of an adversary (modeled as a computationally unbounded but
always-halting algorithm) for guessing a valid password should be reasonably small, i.e.,
not higher than for trying out all possible candidates. Therefore, given a password
scrambler PS, we define the Password-Recovery Advantage of an adversary A as follows:

18



2. Preliminaries

Definition 2.4 (Password-Recovery Advantage). Let s denote a randomly
chosen salt value, and let Q be a entropy source with e bits of min-entropy. Then,
we define the password-recovery advantage of an adversary A against a password
scrambler PS as

AdvREC

PS (A) = Pr
[

pwd← Q, h← PS(s, pwd) : x
$
← APS,s,h : PS(s, x)

?
= h

]

.

Furthermore, we denote by AdvREC

PS (q) the maximum advantage taken over all ad-
versaries asking at most q queries to PS.

In Section 4.1 we provide an analysis of Catena which shows that for guessing a valid
password, an adversary either has to try all possible candidates or it has to find a
preimage for the underlying hash function.

Client-Independent Update. According to Moore’s Law [32], the available resources of
an adversary increase continually over time – and so do the legitimate user’s resources.
Thus, a security parameter chosen once may be too weak after some time and needs to
be updated. This can easily be done immediately after the user has entered its password
the next time. However, in many cases, a significant number of user accounts are inactive
or rarely used, e.g., 70.1% of all Facebook accounts experience zero updates per month
[33] and 73% of all Twitter accounts do not have at least one tweet per month [40]. It is
desirable to be able to compute a new password hash (with a higher security parameter)
from the old one (with the old and weaker security parameter), without requiring user
interaction, i.e., without having to know the password. We call this feature a client-
independent update of the password hash. When key stretching is done by iterating an
operation, client-independent updates may or may not be possible, depending on the
details of the operation, e.g., when the original password is one of the inputs for every
operation, client-independent updates are impossible.

Server Relief. A slow and – even worse – memory-demanding password-based log-in
process may be too much of a burden for many service providers. A way to overcome this
problem, i.e., to shift the effort from the side of the server to the side of the client, can be
found in [34] and more recently in [15]. We realized this idea by splitting the password-
scrambling process into two parts: (1) a slow (and possibly memory-demanding) one-way
function F and (2) an efficient one-way function H. By default, the server computes
the password hash h = H(F (pwd , s)) from a password pwd and a salt s. Alternatively,
the server sends s to the client who responds y = F (pwd , s). Finally, the server just
computes h = H(y). While it is probably easy to write a generic server-relief protocol,
none of the existing password scramblers has been designed to naturally support this
property. Note that this property is optional, e.g., the server-relief idea makes no sense
for the proof-of-work scenario since the whole effort should be already on the side of the
client.

19



2. Preliminaries

Resistance Against Cache-Timing Attacks. Consider the implementation of a pass-
word scrambler, where data is read from or written to a password-dependent address
a = f(pwd). If, for another password pwd ′, we would get f(pwd ′) 6= a and the adver-
sary could observe whether we access the data at address a or not, then it could use
this information to filter out passwords candidates. Under certain circumstances, tim-
ing information related to a given machine’s cache behavior may enable the adversary
to observe which addresses have been accessed. Thus, we formally introduce resistance
against cache-timing attacks.

Definition 2.5 (Resistance against Cache-Timing Attacks). Suppose the
function F : {0, 1}∗ × {0, 1}k → {0, 1}n processes arbitrary large data together with
a secret value K with |K| = k, and outputs a fixed-length value of size n. We call
F resistant against cache-timing attacks iff its control flow does not depend on the
secret input K.

Key-Derivation Function (KDF). Beyond authentication, passwords are also used to
derive symmetric keys. Obviously, one can just use the output of the password scrambler
as a symmetric key – perhaps after truncating it to the required key size. This is a
disadvantage if one needs either a key longer than the password hash or multiple keys.
Therefore, it is prudent to consider a KDF as a tool of its own right – with the option
to derive more than one key and with the security requirement that compromising some
of the keys does not endanger the other ones. Note that it is required for a KDF that
the input and output behavior cannot be distinguished from a set of random functions.
Thus, we define the random-oracle security of a password scrambler as follows:

Definition 2.6 (Random-Oracle Security). Let PS : {0, 1}∗ → {0, 1}n be a
password scrambler which gets an input of arbitrary length and produces a fixed-
length output. Let A be a fixed adversary which is allowed to ask at most q queries
to an oracle. Further, let $ : {0, 1}∗ → {0, 1}n be a random function which, given an
input of arbitrary length, always returns uniformly at random values from {0, 1}n.
Then, the Random-Oracle Security of a password scrambler PS is defined by

Adv$
PS(A) =

∣

∣

∣
Pr

[

APS ⇒ 1
]

− Pr
[

A$ ⇒ 1
]
∣

∣

∣
.

Furthermore, by Adv$
PS(q) we denote the maximum advantage taken over all ad-

versaries asking at most q queries to an oracle.

Note that the input (of arbitrary length) of PS contains the password, the salt, and
optional parameters, e.g., parameters to adjust the memory consumption or the compu-
tational time.

20



2. Preliminaries

Resistance Against (Weak) Garbage-Collector ((W)GC) Attacks. The basic idea of
this attack type is to exploit that PS leave the internal state or (efficiently computable)
password -dependend values in memory for a long time during their computation. More
detailed, the goal of an adversary is to find a password filter for password candidates
from observing the memory used by an algorithm, where the password filter requires sig-
nificantly less time/memory in comparison to the original algorithm. Next, we formally
define the term Garbage-Collector Attack.

Definition 2.7 (Garbage-Collector Attack). Let PSG(·) be a memory-consum-
ing password scrambler that depends on a memory-cost parameter G and let Q be
a positive constant. Furthermore, let v denote the internal state of PSG(·) after its
termination. Let A be a computationally unbounded but always-halting adversary
conducting a garbage-collector attack. We say that A is successful if some knowledge
about v reduces the runtime of A for testing a password candidate x from O(PSG(x))
to O(f(x)) with O(f(x)) ≪ O(PSG(x))/Q, ∀x ∈ {0, 1}∗.

In the following we define the Weak Garbage-Collector (WGC) Attack.

Definition 2.8 (Weak Garbage-Collector Attack). Let PSG(·) be a password
scrambler that depends on a memory-cost parameter G, and let R(·) be an underlying
function of PSG(·) that can be computed efficiently. We say that an adversary ıs
successful in terms of a weak garbage-collector attack if a value y = R(pwd) remains
in memory during (almost) the entire runtime of PSG(pwd), where pwd denotes the
secret input.

An adversary that is capable of reading the internal memory of a password scrambler
during its invocation gains knowledge about y. Thus, it can reduce the effort for filtering
invalid password candidates by just computing y′ = R(x) and checking whether y = y′,
where x denotes the current password candidate. Note that the function R can also be
the identity function. Then, the plain password remains in memory, rendering WGC
attacks trivial.

Endianness. All values used within the reference implementation of Catena are as-
sumed to be represented in little-endian byte order.

21



2. Preliminaries

2.3. Notational Conventions

Identifier Description

pwd password

λ security parameter of F (depth)

s salt (public random value)

p pepper (secret bits of the salt)

t tweak

d domain (application specifier) of Catena

V unique version identifier

γ public input (e.g., salt)

glow,ghigh minimum garlic; current garlic with G = 2ghigh

H underlying cryptographic hash function

H′ reduced version of H

PS/PSF Password Scrambler/Password-Scrambling Framework

m output length of Catena

F memory-hard function replaced in a particular instance of Catena

Γ function depending on the public input γ

$ function returning a fixed-size random value

h, y password hash (or intermediate hash)

S(g) memory (space) consumption; depends on the garlic

T (g) time consumption; depends on the garlic

Π(V, E) graph based on V vertices and E edges

ri i-th row of a Πλ
g (V, E)

vji i-th vertex of the j-th BRG

vki,j i-th vertex of the j-th row of the k-th DBG

b number of cores

AO1,...,Oℓ adversary A with access to the oracles O1, . . . , Oℓ

q number of total queries A is allowed to ask

τ Bit-Reversal Permutation

σ function determining the index of the diagonal edges (DBG)

AD associated data

K secret key

|X| size of X in bits or size of a set X

Table 2.1.: Notations used throughout this document.

22



Chapter 3
Catena – A Memory-Hard

Password-Scrambling Framework

In this chapter we introduce our password-scrambling framework (PSF) called Catena.
Besides providing novel and sustainable properties, it provides high resilience against
cache-timing attacks on the secret input.

3.1. Specification

A formal definition is shown in Algorithm 1, whereas the general idea is given in Fig-
ure 3.1. The function truncate(x,m) (see Line 6 of Algorithm 1) outputs the m least sig-
nificant bytes of x, where m is the user-chosen output length of Catena. After process-
ing the password, the tweak, and the salt, the function flap is called once with ⌈glow/2⌉ to
provide resistance against weak garbage-collector attacks. Then, as the first step of each
invocation of the main loop, the function flap is called, where the password-dependent
input x is padded with as many 0’s as necessary so that x || 0∗ fits the output size of the
underlying hash function. By default, Catena uses BLAKE2b for H and BLAKE2b-1
for H ′ (Catena-Dragonfly and Catena-Butterfly), where BLAKE2b-1 denotes
one single round of BLAKE2b including finalization (see Appendix A for a detailed de-
scription of BLAKE2b-1). Note that, depending on the requirements of the application,
it is also possible to set H ′ = H = BLAKE2b (e.g., we followed this approach for
Catena-Dragonfly-Full and Catena-Butterfly-Full).
The function flap (see Algorithm 2) consists of three phases: (1) an initialization

phase (see Lines 1 to 6), where the memory of size 2g · n bits is written in a sequential
order (where n denotes the output size of the underlying hash function in bits), (2) the
function Γ (see Line 7) depending on the public input γ, which, can for example, be
instantiated with a graph-based structured satisfying a random memory-access pattern
depending on the salt, and (3) a call to a memory-hard function F (see Line 8).

23



3. Catena – A Memory-Hard Password-Scrambling Framework

Algorithm 1 Catena

Input: pwd {Password}, t {Tweak}, s {Salt}, glow {Min. Garlic}, ghigh {Garlic}, m
{Output Length}, γ {Public Input}

Output: x {Hash of the Password}
1: x← H(t || pwd || s)
2: x← flap(⌈glow/2⌉, x, γ)
3: for g = glow . . . , ghigh do
4: x← flap(g, x || 0∗, γ)
5: x← H(g || x)
6: x← truncate(x,m)
7: end for
8: return x

Algorithm 2 Function flap of Catena

Input: g {Garlic}, x {Value to Hash}, γ {Public Input}
Output: x {Intermediate Hash Value}
1: v−2 ← x⊕ 1
2: v−1 ← x
3: v0 ← H(v−1 || v−2)
4: for i = 1, . . . , 2g − 1 do
5: vi ← H ′(vi−1 || vi−2) {initialize the memory}
6: end for
7: v ← Γ(g, v, γ) {one layer with γ-based memory accesses}
8: x← F (v) {memory-hard function}
9: return x

We denote Catena as Catena-BRG when F is instantiated with BRHg
λ (see Sec-

tion 5.2) and as Catena-DBG when F is instantiated with DBHg
λ (see Section 5.3).

Thus, Catena-Dragonfly is a particular instance of Catena-BRG and Catena-

Butterfly is a particular instance of Catena-DBG. For these instances, we fix the
functions F,H,H ′, and Γ (see Table 3.1), where the functionsH = BLAKE2b and Γ (see
Algorithm 4) are equal for all our instances. Furthermore, for Catena-Dragonfly-

Full and Catena-Butterfly-Full, we set H = H ′ = BLAKE2b. Depending on
the application, one can adapt the parameters glow, ghigh, λ, and γ, where we present our
recommendations in Section 3.4.

Tweak. The parameter t is an additional multi-byte value which is given by:

t← H(V ) || d || λ || m || |s| || H(AD),

where the first, n-bit value H(V ) denotes the hash of the unique version identifier V . An
overview of the values V for our proposed instances is given in Table 3.1. The second,

24



3. Catena – A Memory-Hard Password-Scrambling Framework

...

replacemen

glow glow + 1⌈glow/2⌉ ghigh
input output

flapflapflap flap

Figure 3.1.: The general idea of Catena applying the function flap.

Name F H′ V

Catena-Dragonfly BRHg
λ BLAKE2b-1 “Dragonfly”

Catena-Dragonfly-Full BRHg
λ BLAKE2b “Dragonfly-Full”

Catena-Butterfly DBHg
λ BLAKE2b-1 “Butterfly”

Catena-Butterfly-Full DBHg
λ BLAKE2b “Butterfly-Full”

Table 3.1.: Overview of the default instances of Catena.

byte-sized value d denotes the domain (i.e., the mode) for which Catena is used. We
fix d = 0 for the usage of Catena as a password scrambler, d = 1 when used as a
key-derivation function (see Section 8.3), and d = 2 for the proof-of-work scenario (see
Section 8.1). The remaining possible values for d are reserved for future applications.
The third, byte-sized value λ defines, together with the garlic ghigh (see above), the
security parameters for Catena. The byte-sized value m denotes the output length of
Catena in bytes, and the byte-sized value |s| denotes the total length of the salt in
bytes. The n-bit value H(AD) is the hash of the associated data AD, which can contain
additional information like hostname, user-ID, name of the company, or the IP of the
host, with the goal to customize the password hashes. Note that the order of the values
does not matter as long as they are fixed for a certain application.
The tweak is processed together with the salt and the secret password (see Line 1 of

Algorithm 1). Thus, t can be seen as a weaker version of a salt increasing the additional
computational effort for an adversary when using different values. Furthermore, it allows
to differentiate between diverse applications of Catena, and can depend on all possible
input data. Note that one can easily provide unique tweak values (per user), when
including the user-ID in the associated data.

3.2. Functional Properties

Garlic. Catena employs a graph-based structure, where the memory requirement
highly depends on the number of input vertices of the permutation graph. Since the
goal is to hinder an adversary to make a reasonable number of parallel password checks
using the same memory, we have to consider a minimal number of input vertices. In

25



3. Catena – A Memory-Hard Password-Scrambling Framework

general, we use G = 2g input vertices, where g denotes the garlic parameter. Note that
as in our default instances, we set glow = ghigh = g.

Client-Independent Update (CI-update). Catena’s sequential structure allows client-
independent updates. Let h← Catena(pwd, t, s, glow, ghigh,m, γ) be the hash of a spe-
cific password pwd , where t, s, glow, ghigh,m, and γ denote tweak, the salt, the minimum
garlic, the garlic, the output length, and the public input respectively. After increasing
the security parameter from ghigh to g′high = ghigh + 1, we can update the hash value h
without user interaction by computing:

h′ = truncate(H(g′high || flap(g
′
high, h || 0

∗, γ)),m).

It is easy to see that the equation h′ = Catena(pwd , t, s, glow, g
′
high,m, γ) holds.

Server Relief. In the final iteration of the for-loop in Algorithm 1, the client has to
omit the last invocation of the hash function H (see Line 5). The current output of
Catena is then transmitted to the server. Next, the server computes the password hash
by applying the hash function H and the function truncate. Thus, the vast majority of
the effort (memory usage and computational time) for computing the password hash is
handed over to the client, freeing the server. This enables someone to deploy Catena

even under restricted environments or when using constrained devices – or when a single
server has to handle a huge amount of authentication requests, e.g., in social networks.

Keyed Password Hashing. To further thwart off-line attacks, we introduce a technique
to use Catena for keyed password hashing, where the password hash depends on both
the password and a secret key K. Note that K is the same for all users, and thus, has to
be stored on server-side. To preserve the server-relief property (see above), we encrypt
the output of Catena using the XOR operation with H(K || userID || ghigh || K),
which, under the reasonable assumption that the value (userID || ghigh) is a nonce, was
proven to be CPA-secure in [39]. Let X := {pwd, t, s, glow, ghigh,m, γ}. Then, the output
of Catena

K is computed as follows:

y = Catena
K(userID,X) := Catena(X)⊕H(K || userID || ghigh || K),

where Catena is defined as in Algorithm 1 and the userID is a unique and user-specific
identification number which is assigned by the server. Now, we show what happens
during the client-independent update, i.e., when ghigh = ghigh + r for arbitrary r ∈ N.
The process takes the following four steps:

1. Given K and userID, compute z = H(K || userID || ghigh || K).

2. Compute x = y ⊕ z, where y denotes the current keyed hash value.

3. Update x, i.e., x = H(g || flap(ghigh, x || 0
∗, γ)) for g ∈ {ghigh + 1, . . . , ghigh + r}.

26



3. Catena – A Memory-Hard Password-Scrambling Framework

4. Compute the new hash value y = y ⊕H(K || userID || ghigh + r || K).

Remark. Obviously, it is a bad idea to store the secret key K together with the password
hashes since it can be leaked in the same way as the password-hash database. One
possibility to separate the key from the hashes is to securely store the secret key by
making use of hardware security modules (HSM), which provide a tamper-proof memory
environment with verifiable security. Then, the protection of the secret key depends on
the level provided by the HSM (see FIPS140-2 [13] for details). Another possibility is to
derive K from a password during the bootstrapping phase. Afterwards, K will be kept
in the RAM and will never be on the hard drive. Thus, the key and the password-hash
database should never be part of the same backup file.

3.3. Security Properties

Memory-Hardness. In Chapter 6, we present and discuss the results of Lengauer and
Tarjan [30]. They analyzed the underlying structures which we use in our instances
regarding to their memory-hardness. In short, Catena-BRG (see Section 5.2) provides
a time-memory tradeoff of the form S ·T = G2 (see Definition 2.2), where S denotes the
memory, T the time, and G = 2g the garlic. On the other hand, Catena-DBG (see
Section 5.3) is λ-memory-hard function, i.e., Sλ ·T = Gλ+1 (see Definition 2.3), where λ
denotes the depth of the DBGg

λ. The security analysis is based on the pebble game proof
technique (see Section 2.1). This property enables Catena to thwart massively parallel
adversaries.

Preimage Security. One major requirement for password scramblers is described by
the preimage security, i.e., given a fresh password hash h = PS(pwd), one cannot gain
any information about pwd in practical time. This requirement becomes mostly crucial
in the situation of a leaked password-hash database. In Section 4.1, we show that the
preimage security of Catena depends on 1) the assumption that the underlying hash
function H is a one-way function and 2) the entropy of the password (pwd).

Random-Oracle Security. For the application of Catena as a password scrambler,
this property is noncritical. But, if Catena is used as a key-derivation function (KDF),
one wants the resulting secret key to be indistinguishable from a random string of the
same length. In Section 4.2 we show that for a secret input (pwd), the output of Catena

looks random. The presented proof is based on the assumption that the underlying hash
function behaves like a random oracle.

Cache-Time Resistance. From Definition 2.5, it follows that an algorithm is cache-
time-resistant if its control flow does not depend on the input. One can easily see that
Catena provides this property since it is based on the function F , whose control flow
only depends on the security parameters g (garlic) and λ (depth). Given these two

27



3. Catena – A Memory-Hard Password-Scrambling Framework

parameters, it provides a predetermined memory-access pattern, which is independent
from the secret input (pwd).

3.4. Parameter Recommendation

Hash Function. For the practical application of Catena, we looked for a hash function
with a 512-bit (64 byte) output, since this often complies with the size of a cache line on
common CPUs. In any case, we assume that both the output size of H (and H ′) and the
cache-line size are powers of two. So if, they are not equal, the bigger number is a multiple
of the smaller one. Moreover, the output ofH (and thus, H ′) should be byte-aligned. For
Catena, we decided to use BLAKE2b [5] for H since its high performance in software
allows to use a large value for the garlic g, resulting in a higher memory effort than
for, e.g., SHA3-512 [7], and BLAKE2b-1 for H ′, which is actually one single round of
BLAKE2b including finalization. Further versions of Catena may be instantiated with,
e.g., SHA2-512 [36] since it is well-analyzed [2, 25, 29], standardized, and widely used,
e.g., in sha512crypt, the common password scrambler in several Linux distributions
[16].
Note that the security of Catena does not only rely on the performance of a specific

hash function, but also on the size of the underlying graph (BRGg
λ or DBGg

λ), i.e., the
depth λ and the width g. Thus, even in the case of a secure but very fast cryptographic
hash function, which may be counter-intuitive in the password-scrambling scenario, one
can adapt the security parameter to reach the desired computational effort.

Remark: Our primary recommendation for the Password Hashing Competition (PHC)
is BLAKE2b for H and BLAKE2b-1 for H ′. Nevertheless, we highly encourage users to
plug in their favorite cryptographic hash function such as SKEIN-512 [23] or SHA3-512
for H, and, if desired, a reduced version of these hash functions for H ′.

Cost Parameter. Table 3.2 presents the recommended parameter sets for Catena

(depending on the particular instance) when considering COTS systems. The parameter
set for keyed password hashing is similar to the parameter set for key-less password
hashing, plus an additional 128-bit key. For non-COTS systems, the parameter sets must
be individually adjusted corresponding to the underlying hardware, e.g., for embedded
systems one would choose smaller values glow (minimum garlic) and ghigh (garlic). Note
that for semantic reasons we set the minimum time cost value λ = 1 and the minimum
memory cost values ghigh = glow = 1. The reference implementation currently bonds
these values to 255 and 63 for λ and ghigh, respectively. Nevertheless, these upper
bounds can change depending on the implementation.

Other instances. Users are free to choose other instances of Catena according to their
specific needs. If, e.g., the defender’s machine is constrained so, that even Catena-

Butterfly does not fit into the memory, we recommend to use Catena-Butterfly

28



3. Catena – A Memory-Hard Password-Scrambling Framework

Password Hashing

Algorithm glow/ghigh λ Time

Catena-Dragonfly 21/21 2 0.36 sec
Catena-Dragonfly-Full 18/18 2 0.19 sec

Catena-Butterfly 16/16 4 0.28 sec
Catena-Butterfly-Full 14/14 4 0.38 sec

Key Derivation

Catena-Dragonfly-Full 22/22 2 3.15 sec
Catena-Butterfly-Full 17/17 4 3.76 sec

Table 3.2.: Recommended parameter sets for COTS systems. All timings are measured
on an Intel(R) Core(TM) i7-3930M CPU @ 3.20GHz system. For all instances
we set γ = s.

with smaller ghigh, and to increase λ accordingly. E.g., Catena-Butterfly with ghigh =
14 would fit into about 1MB of memory. With Catena-Axungia we provide a search
tool for optimal parameters under given constraints. Catena-Axungia can be found
on:

https://github.com/medsec/catena-axungia.

Moreover, note that both Catena-Dragonfly and Catena-Butterfly allow to
leak the public γ by cache-timing attacks. Usually, the salt is not secret and this is not
an issue. But in some special cases, an application may require to keep the salt secret.
In that case, we suggest to choose any fixed random value as γ.
Consider, e.g., an encrypted file system with different partitions. Naturally, the salt

used to generate the secret key is different for each partition. If the security requirement
is to hide which partition has been mounted, the salt must not be used for γ.

Encoding. The parameter encoding table can be found in Table 3.3.

Implementation. A current reference implementation can be found on

https://github.com/medsec/catena.

This implementation was used to create the test vectors given in Appendix C. An im-
plementation that allows extension and modification can be found on:

https://github.com/medsec/catena-variants.

29

https://github.com/medsec/catena-axungia
https://github.com/medsec/catena
https://github.com/medsec/catena-variants


3. Catena – A Memory-Hard Password-Scrambling Framework

Parameter Description Encoding

gp garlic (password hashing) 1 byte
gk garlic (key derivation) 1 byte
λ depth 1 byte
d domain 1 byte
m output length in bytes 1 byte
s salt byte string
|s| salt length in bytes 1 byte

Table 3.3.: Parameter choices for the practical usage of Catena.

30



Chapter 4
Security Analysis of the Catena

Framework

We denote a password scrambler to be secure if it provides at least 1-memory-hardness
and preimage security. Furthermore, it should be resistant against cache-timing at-
tacks. Catena-Butterfly (see Section 5.3) inherits its λ-memory-hardness (see Def-
inition 2.3) from F , whereas Catena-Dragonfly (see Section 5.3) provides only 1-
memory-hardness, i.e., memory-hardness (see Definition 2.2).
Since the memory-access pattern of Catena is independent from the password, it

provides resistance against cache-timing attacks against the secret input. Finally, we
show that Catena is a secure password scrambler that behaves like a good random
function, which is useful for using Catena as a secure KDF.

4.1. Password-Recovery Resistance.

In this section we show that Catena is a good password scrambler, i.e., given the hash
value h it is infeasible for an adversary to do better than trying out password candidates
in likelihood order to obtain the correct password.

Theorem 4.1 (Catena is Password-Recovery Resistant). Let m denote the
min-entropy of a password source Q. Then, it holds that

AdvREC
Catena,Q(q) ≤

q

2m
+Advpre

H (q, t).

Proof. Note that an adversary A can always guess a (weak) password by trying out
about 2m password candidates. For a maximum of q queries, it holds that the success
probability is given by q/2m. Instead of guessing 2m password candidates, an adversary
can also try to find a preimage for a given hash value h. It is easy to see from Algorithm 1

31



4. Security Analysis of the Catena Framework

that an adversary thus has to find a preimage for H in Line 5. More detailed, for a given
value h with h← H(ghigh || x), A has to find a valid value for x. The success probability
for this can be upper bounded by Advpre

H (q, t). Our claim follows by adding up the
individual terms. �

4.2. Pseudorandomness.

In the following we analyze the advantage of an adversary A in distinguishing the output
of Catena from a random bitstring of the same length as the output of Catena.
Therefore, we model the internally used hash function H : {0, 1}∗ → {0, 1}n as a random
oracle. Note that the output length m, the depth λ, and the value glow (minimum garlic)
are constant values which are set once when initializing a system the first time.

Theorem 4.2 (PRF Security of Catena). Let q denote the number of queries
made by an adversary and s a randomly chosen salt value. Furthermore, let H be
modelled as a random oracle and ghigh ≥ glow ≥ 1. Then, it holds that

AdvPRF
Catena(q, t) ≤

(q · ghigh + q)2

2n
+Advcoll

F (ghigh · q).

Proof. Let ai = (pwd i || ui || si || ghigh || γ
i) represent the i-th query, where pwd denotes

the password, u denotes the tweak, s the salt, ghigh the garlic, and γ the public input.
For this proof, we impose the reasonable condition that all queries of an adversary are
distinct, i.e., ai 6= aj for i 6= j.
Suppose that yj denotes the output of flap(ghigh, x || 0

∗, γj) of the j-th query (cf.
Algorithm 1, Line 4). Then, H(ghigh || y

j) is the output of Catena(aj). In the case
that y1, . . . , yq are pairwise distinct, an adversary A cannot distinguish H(ghigh || ·) from
a random function $(·) since in the random-oracle model, both functions return a value
chosen uniformly at random from {0, 1}n.
Therefore, we have to upper bound the probability of the event yi = yj with i 6= j.

Due to the assumption that A′s queries are pairwise distinct, there must be at least one
collision for H or flap. For q queries, we have at most q(ghigh + 1) invocations of H.
Thus, we can upper bound the collision probability by

(q · ghigh + q)2

2n
.

Furthermore, we have q · ghigh invocations of the memory-consuming function flap. We
can upper bound the probability of a collision by Advcoll

Fλ
(ghigh · q). Our claim follows

from the union bound. �

32



Chapter 5
Instances

In this section, we introduce two concrete instances: Catena-Dragonfly andCatena-

Butterfly. Prior, we describe the function SaltMix which is shared by both in-
stances.

5.1. SaltMix

The purpose of the function Γ from Algorithm 2 (see Chapter 3) is to update the state
array v by accessing its elements in this salt-dependent manner. Usual time-memory
tradeoffs could exploit predictable memory accesses. Therefore, we introduced a random-
access layer that bases on a public input, e.g., the salt. This would render the implemen-
tation of time-memory tradeoffs much more difficult. Furthermore, we claim that such a
construction would also increase the costs of attacks with expensive non-reprogrammable
hardware: either, adversaries would have to design a new computational circuit for each
salt, or to support multiple salts – which would turn them into almost “reprogrammable”
hardware.
The function SaltMix, as defined in Algorithm 3, is our proposed instantiation for Γ.

In each iteration of the for-loop (see Lines 12-16), two random g-bit values j1 and j2 are
computed using a random-number generator (the xorshift1024star function on the left
side in Algorithm 2). There, j1 determines the index for both the updated word and the
first input, and j2 that of the second input (see Line 15). The use of H may appear as a
natural choice for random-number generator. Though, due to its better performance, we
decided for the non-cryptographic but statistically sound xorshift1024star RNG [49],
and used H only to seed it. The seed is given by the 1024-bit value (H(s) || H(H(s)) as
shown in Line 11 of Algorithm 4. To further increase the performance, SaltMix updates
only 2⌈3g/4⌉ (out of 2g) values of the state v. Note that the state array v consists of 512-
bit values, whereas the 1024-bit state p used in the xorshift1024star functions consists
of sixteen 64-bit words s0, . . . , s15.

33



5. Instances

Algorithm 3 The functions SaltMix (left) and xorshift1024star (right).

SaltMix

Input: g {Garlic}, v {State}, s {Salt}
Output: v {Updated State}
10: r ← H(s) || H(H(s))
11: p← 0
12: for i← 0, . . . , 2⌈3g/4⌉ − 1 do
13: (j1, r, p)← xorshift1024star(r, p)
14: (j2, r, p)← xorshift1024star(r, p)
15: vj1 ← H ′(vj1 || vj2)
16: end for
17: return v

xorshift1024star

Input: r, p
Output: idx {Current Index}
20: s0 ← rp
21: p← (p+ 1) mod 16
22: s1 ← rp
23: s1 ← s1 ⊕ (s1 ≪ 31)
24: s1 ← s1 ⊕ (s1 ≫ 11)
25: s0 ← s0 ⊕ (s0 ≫ 30)
26: rp ← s0 ⊕ s1
27: idx← rp · 1181783497276652981
28: return (idx≫ (64− g), r, p)

5.2. Catena-Dragonfly

For Catena-Dragonfly, the function flap (see Line 4 of Algorithm 1) is instantiated
by SaltMix for the function Γ, and by (g, λ)-Bit-Reversal Hashing (BRHg

λ), as defined
in Algorithm 4, for the function F . In the remainder of this section, we discuss the origin
of the function BRHg

λ, where vji denotes the i-th vertex of the j-th bit-reversal graph.

Algorithm 4 (g, λ)-Bit-Reversal Hashing (BRHg
λ).

Input:
g {Garlic},
v {State Array},
λ {Depth}

Output: x {Password Hash}
1: for k ← 1, . . . , λ do
2: r0 ← H(v2g−1 || v0)
3: for i = 1, . . . , 2g − 1 do
4: ri ← H ′(ri−1 || vτ(i))
5: end for
6: v ← r
7: end for
8: return r2g−1

Definition 5.1 (Bit-Reversal Permutation τ). Fix a number k ∈ N and repre-
sent i ∈ Z2k as a binary k-bit number, (i0, i1, . . . , ik−1). The bit-reversal permutation
τ : Z2k → Z2k is defined by

τ(i0, i1, . . . , ik−1) = (ik−1, . . . , i1, i0).

34



5. Instances

Output

I����

v00 v01 v02 v03 v04 v05 v06 v07

v10 v11 v12 v13 v14 v15 v16 v17

Figure 5.1.: A (3, 1)-bit-reversal graph (BRG3
1).

The bit-reversal permutation τ defines the (g, λ)-Bit-Reversal Graph (BRGg
λ).

Definition 5.2 ((g, λ)-Bit-Reversal Graph). Fix a natural number g, let V de-
note the set of vertices, and E the set of edges within this graph. Then, a (g, λ)-bit-
reversal graph BRGg

λ(V , E) consists of (λ+ 1) · 2g vertices

{v00, . . . , v
0
2g−1} ∪ {v

1
0, . . . , v

1
2g−1} ∪ · · · ∪ {v

λ−1
0 , . . . , vλ−12g−1} ∪ {v

λ
0 , . . . , v

λ
2g−1},

and (2λ+ 1) · 2g − 1 edges as follows:

• (λ+ 1) · (2g − 1) edges vji−1 → vji for i ∈ {1, . . . , 2g − 1} and j ∈ {0, 1, . . . , λ}.

• λ · 2g edges vji → vj+1
τ(i) for i ∈ {0, . . . , 2g − 1} and j ∈ {0, 1, . . . , λ− 1}.

• λ additional edges vj2g−1 → vj+1
0 where j ∈ {0, . . . , λ− 1}.

For example, Figure 5.1 illustrates an BRG3
1. A BRG3

4 can be seen in Appendix D. Note
that this graph is almost identical – except for one additional edge e = (v07, v

1
0) – to the

bit-reversal graph presented by Lengauer and Tarjan in [30].

Bit-Reversal Hashing. The (g, λ)-Bit-Reversal Hashing function is defined in Algo-
rithm 4. It requires O(2g) invocations of a given hash function H ′ for a fixed value of
x. The three inputs g, x, and λ of BRHg

λ represent the garlic g = log2(G), the value
to process, and the depth, respectively. Thus, g specifies the required units of memory.
Moreover, incrementing g by one doubles the time and memory effort for computing the
password hash.

5.3. Catena-Butterfly

For Catena-Butterfly, the function flap (see Line 4 of Algorithm 1) is instantiated
by SaltMix for the function Γ, and by (g, λ)-Double-Butterfly Hashing (DBHg

λ), as

35



5. Instances

defined in Algorithm 5, for the function F . In the remainder of this section, we discuss
the origin of the function DBHg

λ, which is based on a stack of λ G-superconcentrators.

Algorithm 5 (g, λ)-Double-Butterfly Hashing (DBHg
λ).

Input:
g {Garlic},
v {State Array},
λ {Depth}

Output: x {Password Hash}
1: for k = 1, . . . , λ do
2: for j = 1, . . . , 2g − 1 do
3: r0 ← H(v2g−1 ⊕ v0 || vσ(g,j−1,0))
4: for i = 1, . . . , 2g − 1 do
5: ri ← H ′(ri−1 ⊕ vi || vσ(g,j,i−1))
6: end for
7: v ← r
8: end for
9: end for

10: return v2g−1

The following definition of a G-superconcentrator is a slightly adapted version of that
introduced in [30].

Definition 5.3 (G-Superconcentrator). A directed acyclic graph Π(V , E) with a
set of vertices V and a set of edges E, a bounded indegree, G inputs, and G outputs
is called a G-superconcentrator if for every k such that 1 ≤ k ≤ G and for every pair
of subsets V1 ⊂ V of k inputs and V2 ⊂ V of k outputs, there are k vertex-disjoint
paths connecting the vertices in V1 to the vertices in V2.

A double-butterfly graph (DBG) is a special form of a G-superconcentrator which is
defined by the graph representation of two back-to-back placed Fast Fourier Trans-
formations [12]. More detailed, it is a representation of twice the Cooley-Tukey FFT
algorithm [14] omitting one row in the middle (see Figure 5.2 for an example where
g = 3). Therefore, a DBG consists of 2 · g rows.
Based on the DBG, we define the sequential and stacked (g, λ)-double-butterfly graph. In
the following, we denote vki,j as the i-th vertex of the j-th row of the k-th double-butterfly
graph.

36



5. Instances

Figure 5.2.: A Cooley-Tukey FFT graph with eight input and output vertices.

vertical sequential + connecting layerdiagonal

Figure 5.3.: Types of edges as we use them in our definitions.

37



5. Instances

Definition 5.4 ((g, λ)-Double-Butterfly Graph). Fix a natural number g ≥ 1
and let G = 2g. Then, a (g, λ)-double-butterfly graph DBGg

λ(V , E) consists of 2g ·
(λ · (2g − 1) + 1) vertices

• {vk0,0, . . . , v
k
2g−1,0} ∪ . . . ∪ {vk0,2g−2, . . . , v

k
2g−1,2g−2} for 1 ≤ k ≤ λ and

• {vλ0,2g−1, . . . , v
λ
2g−1,2g−1},

and λ · (2g − 1) · (3 · 2g) + 2g − 1 edges

• vertical: 2g · (λ · (2g − 1)) edges

(vki,j , v
k
i,j+1) for 0 ≤ j ≤ 2g − 2, 0 ≤ i ≤ 2g − 1, and 1 ≤ k ≤ λ,

• diagonal: 2g · λ · g + 2g · λ · (g − 1) edges

(vki,j , v
k
i⊕2g−1−i,j+1) for 0 ≤ j ≤ g − 1, 0 ≤ i ≤ 2g − 1, and 1 ≤ k ≤ λ.

(vki,j , v
k
i⊕2i−(g−1),j+1

) for g ≤ j ≤ 2g − 2, 0 ≤ i ≤ 2g − 1, and 1 ≤ k ≤ λ.

• sequential: (2g − 1) · (λ · (2g − 1) + 1) edges

(vki,j , v
k
i+1,j) for 1 ≤ j ≤ 2g − 1, 0 ≤ i ≤ 2g − 2, 1 ≤ k ≤ λ, and

(vλi,2g−1, v
λ
i+1,2g−1) for 0 ≤ i ≤ 2g − 2

• connecting layer: λ · (2g − 1) edges

(vk2g−1,j , v
k
0,i+1) for 1 ≤ k ≤ λ, 0 ≤ j ≤ 2g − 2.

In Appendix E you can see a DBG3
2. Figure 5.3 illustrates the individual types of edges

we used in our definition above. Moreover, an example for g = 3 and λ = 1 can be seen
in Figure 5.4.

Double-Butterfly Hashing. The (g, λ)-double-butterfly hashing operation is defined in
Algorithm 5. The structure is based on a (g, λ)-double-butterfly graph. Note that the
function σ (see Lines 3 and 5) is given by

σ(g, j, i) =

{

i⊕ 2g−1−j if 0 ≤ j ≤ g − 1,

i⊕ 2j−(g−1) otherwise.

Thus, σ determines the indices of the vertices of the diagonal edges (see Figure 5.3).
Since the security of Catena in terms of password hashing is based on a time-memory

tradeoff, it is desired to implement it in an efficient way, making it possible to increase the
required memory. We recommend to use BLAKE2b [5] as the underlying hash function,

38



5. Instances

H

H

o�����

intput

Figure 5.4.: A (3, 1)-double-butterfly graph (DBG3
1).

implying a block size of 1024 bits with 512 bits of output. Thus, it can process two input
blocks within one compression function call. This is suitable for the BRHg

λ operation
since a bit-reversal graph satisfies a fixed indegree of at most 2. When considering the
DBHg

λ operation, we cannot simply concatenate the inputs to H (and H ′) while keeping
the same performance per hash function call, i.e., three inputs to H require two compres-
sion function calls, which is a strong slow-down in comparison to BRHg

λ. Therefore, we
compute H(X,Y, Z) = H(X⊕Y || Z) instead of H(X,Y, Z) = H(X || Y || Z) obtaining
the same performance as for the BRHg

λ operation per hash function call. Obviously, this
doubles the probability of an input collision. Nevertheless, for a 512-bit hash function,
the success probability for a collision of an adversary is still negligible. Based on the ap-
proach above, the number of hash function calls to compute Row ri from Row ri−1 is the
same for BRHg

λ and DBHg
λ. Moreover, for both operations it holds that the number of

hash function calls is equal to the number of compression function calls (when used with
BLAKE2b). More detailed, the BRHg

λ operation requires 2g−1+λ ·2g calls to H (or H ′)
and the DBHg

λ operation requires 2g−1+λ·(2g−1)·2g calls toH (orH ′). It is easy to see,
that the performance of Catena-DBG (and thus Catena-Butterfly) in comparison
to Catena-BRG (and thus Catena-Dragonfly) is decreased by a logarithmic factor.

Remark. Note that the performance optimization discussed above has no influence on
the λ-memory hardness of the DBHg

λ operation since the first input X ⊕ Y is given
by XORing vertices from the sequential or connecting layer and the vertical layer. In
Chapter 6 we discuss the results of [30] who have shown that even without the sequential
input, the DBHg

λ operation provides λ-memory-hardness. Thus, adding additional inputs
operation does not invalidate their results. The objective of the sequential layer is to
thwart the possibility of computing DBHg

λ in parallel.

39



Chapter 6
Security Analysis of Catena-BRG and

Catena-DBG

In this section we discuss the security of Catena-BRG and Catena-DBG against side-
channel attacks. Furthermore, we discuss the memory-hardness and pseudorandomness
of both instances. Note that to prove memory-hardness of an instantiation of Catena it
is sufficient to elaborate on the particular instantiation of the function F . Moreover, each
of our particular instances (Catena-Dragonfly and Catena-Butterfly) inherits
the security from Catena-BRG or Catena-DBG (depending on the instantiation of
F ).

6.1. Resistance Against Side-Channel Attacks

Straightforward implementations of either Catena-BRG or Catena-DBG provide nei-
ther a password-dependent memory-access pattern nor password-dependent branches.
Therefore, both instances are resistant against cache-timing attacks (see Definition 2.5).
Considering a malicious garbage collector (see Definition 2.7), each of Algorithms 4

and 5 exposes the arrays v and r. Both arrays are overwritten multiple times (depending
on the choice of λ). Lets consider both instances with g = 3 and λ = 1. Then, for BRH3

2,
the array v is overwritten twice and the array r once, whereas for DBH3

2, v is overwritten
10 times and r nine times. Even for λ = 1, Catena-DBG is resistant against garbage-
collector attacks and furthermore, it follows that any variant of Catena with some
fixed λ ≥ 2 is at least as resistant to garbage-collector attacks as the same variant with
λ− 1 in the absence of a malicious garbage collector.

Remark. Note that cache-timing and garbage-collector attacks have even more severe
consequences. They do not only speed-up regular password-guessing attacks where the
password hash is already in possession of the adversary. They also enable an adversary
A to recover a password without knowing the password hash at all by just verifying the

40



6. Security Analysis of Catena-BRG and Catena-DBG

memory-access pattern.

6.2. Memory-Hardness

The memory-hardness of an algorithm which can be represented as a DAG with bounded
indegree, can be shown by “playing” the pebble game (see Section 2.1). Here, we restate
and discuss the results presented by Lengauer and Tarjan in [30].

Catena-BRG. In [30], Lengauer and Tarjan have proven the lower bound of pebble
movements for a (G, 1)-bit-reversal graph.

Theorem 6.1 (Lower Bound for a BRGg
1 [30]). If S ≥ 2, then, pebbling the

bit-reversal graph BRGg
1(V , E) consisting of G = 2g input nodes with S pebbles takes

time

T >
G2

16S
.

Biryukov and Khovratovich have shown in [9] that stacking more than one bit-reversal
graph only adds some linear factor to the quadratic time-memory tradeoff. Hence, a
BRGg

λ with λ > 1 does not achieve the properties of a λ-memory-hard function.

Catena-DBG. Likewise, the authors of [30] analyzed the time-memory tradeoff for a
stack of λ G-superconcentrators. Since the double-butterfly is a special form of a G-
superconcentrators, their bound also holds for DBGg

λ.

Theorem 6.2 (Lower Bound for a (G, λ)-Superconcentrator [30]).
Pebbling a (G, λ)-superconcentrator using S ≤ G/20 black and white pebbles
requires T placements such that

T ≥ G

(

λG

64S

)λ

.

Discussion. For scenarios where a quadratic time-memory tradeoff is sufficient, we rec-
ommend the efficient Catena-BRG (i.e., its particular instance Catena-Dragonfly)
with either λ = 1 or – if garbage-collector attacks pose a relevant threat – with λ = 2.
Note that the benefit of greater values for λ is very limited since the costs for pebbling the
bit-reversal graph remain quadratic. For scenarios that require a higher time-memory
tradeoff, we highly recommend the λ-memory-hard Catena-DBG (i.e., its particular

41



6. Security Analysis of Catena-BRG and Catena-DBG

instance Catena-Butterfly) with λ = 4, which is sufficient for most practical appli-
cations. A detailed parameter recommendation can be found in Section 3.4.
We have to point out that the computational effort for DBHg

λ with reasonable values
for g, e.g., g ∈ [19, 21], may stress the patience of many users since the number of vertices
and edges grows logarithmic with G. Thus, it remains an open research problem to find a
(G, λ)-superconcentrator – or any other λ-memory-hard function – that can be computed
more efficiently than a DBHg

λ.

6.3. Pseudorandomness

For proving the pseudorandomness of Catena-BRG and Catena-DBG, we refer to
the definition Random-Oracle Security which was introduced in Section 2.2 (see Def-
inition 2.6). Therefore, we set H = H ′ and model the internally used hash function
H : {0, 1}∗ → {0, 1}n as a random oracle. Furthermore, for simplicity, we do not include
the function Γ (see Line 7 of Algorithm 2) since it is a user-chosen function and can even
be neglected, i.e., it can be the identity function.

Theorem 6.3 (Collision Security of BRHg
λ). Let q denote the number of

queries made by an adversary and s a randomly chosen salt value. Furthermore,
let H be modelled as a random oracle. Then, we have

Advcoll
BRH

g
λ
(q, t) ≤

(q · (λ+ 1))2

2n−2g
.

Proof. It is easy to see from Algorithm 4 that a collision BRHg
λ(x) = BRHg

λ(x
′) for

x 6= x′ implies a collision for H. We upper bound the collision probability for H by
deducing the total amount of invocations of H per query. There are 2g invocations of H
in Lines 4-5 (initialization) of Algorithm 2. In addition, there are λ · 2g invocations in
Lines 2-4 of Algorithm 4 leading to a total of (λ + 1) · 2g invocations of H. Since H is
modelled as a random oracle, we can upper bound the collision probability for q queries
by

(q · (λ+ 1) · 2g)2

2n
≤

(q · (λ+ 1))2

2n−2g
.

Thus, our claim follows. �

Finally, we analyze the collision resistance of DBHg
λ. Again, we model the internally

used hash function H : {0, 1}∗ → {0, 1}n as a random oracle.

Theorem 6.4 (Collision Security of DBHg
λ). Let q denote the number of

queries. Furthermore, let H be modelled as a random oracle for some fixed inte-
gers ghigh, glow, λ ≥ 1 with ghigh ≥ glow and G = 2ghigh. Then, it holds that

Advcoll
DBH

g
λ
(q, t) ≤

(q · λ · ghigh)
2

2n−2ghigh−3
.

42



6. Security Analysis of Catena-BRG and Catena-DBG

Proof. It is easy to see from Algorithm 5 that a collision DBHg
λ(x) = DBHg

λ(x
′) for

x 6= x′ implies either an input or output collision for H.
For our analysis, we replace the random oracle H by Ht(x) := H(truncaten(x)) that

truncates any input to n bits before hashing. Thus, any collision in the first n bits of
the input of H in Lines 3 and 5 of Algorithm 5 leads to a collision of the output of H,
regardless of the remaining inputs.

Output Collision. In this case, we upper bound the collision probability for H by
deducing the total amount of invocations of Ht per query. There are 2g invocations of
Ht in Lines 4-5 (initialization) of Algorithm 2. In addition, there are λ · (2g − 1) · 2g

invocations in Lines 3-5 of Algorithm 5 leading to a total of λ · 2g · 2g invocations of Ht.
Since H (and thus Ht) is modelled as a random oracle, we can upper bound the collision
probability for q queries by

(q · λ · 2g · 2g)2

2n
≤

(q · λ · g)2

2n−2g−2
.

Input Collision. In this case we have to take into account that an input collision for
distinct queries a and b in Lines 3 and 5 of Algorithm 5 can occur:

va2g−1 ⊕ va0 = vb2g−1 ⊕ vb0 (Algorithm 5, Line 3)

or
rai−1 ⊕ vai = rbi−1 ⊕ vbi (Algorithm 5, Line 5).

For each query, this can happen λ · (2g− 1) · 2g times. Note that all values vi and ri are
outputs from the random oracle Ht, except the initial value v0. Hence, we can upper
bound the collision probability for this event by

(q · λ · (2g − 1) · 2g)2

2n
≤

(q · λ · g)2

2n−2g−2
.

Our claim follows from the union bound. �

Remark. The proof presented here does clearly hold for H = H ′, which is our rec-
ommendation for the usage of Catena as a key-derivation function. Nevertheless, for
password hashing, we iterate H ′ = BLAKE2b-1 thousands of times and have imple-
mented it in a compatible way to H, i.e., 12 times the application of H ′ (excluding
finalization except for the last step) is similar to one times the application of H. Thus,
we (informally) assume that 12 times the application of H ′ provides similar security as
one invocation of H. But, since H ′ is a user-chosen parameter, this assumption can
obviously change for different instances of Catena.

43



Chapter 7
Design Discussion

In this section, we give an informal overview over the main observations and ideas that
lead to the development of Catena.

7.1. Default instances

Catena is a framework that allows users to choose their own instantiation that suits
their specific needs best. Making the proper choice may be a difficult for many users,
though. Furthermore, cryptanalysts prefer a fixed target rather than a generic framework
where any attack can be defended by changing the instances. For these reasons, we
provide two default instances of Catena:

Catena-Butterfly: This is based on several layers of Catena-DBG, i.e., a λ-memory-
hard function for λ > 1, where each layer is somewhat slow (time proportional
to g · 2g for garlic g). Thus, the amount S of memory which can be claimed in a
given amount of time is limited (typically less than 10MB). Catena-Butterfly

should be used

• by defenders who cannot afford to use a huge amount of memory for password
hashing, anyway,

• mainly as a defense against typical “memory-constrained” adversaries who
cannot afford S units of memory for many parallel cores.

Catena-Dragonfly: This is based on Catena-BRG, and therefore “only”memory-hard.
Since a layer of Catena-BRG can be executed much faster than a layer of
Catena-DBG (time proportional to 2g rather than g · 2g for garlic g), this allows
to allocate much more memory (e.g., 100MB or more). Catena-Dragonfly

shall be used

• by defenders who can afford to allocate so much memory, and

44



7. Design Discussion

• as a technique to maximize the cost of password cracking even for high-budget
adversaries.

Note that the version that a user should choose depends on her machine, on the usage
scenario, and on the assumed adversary to defend against.

Defender’s machine. Catena has been designed to run on any machine, from cheap
smartphones to high-end servers. The large-memory variant Catena-Dragonfly may
not always be acceptable, either because that amount of memory unavailable, or because
allocating too much memory would hinder other running processes on the same machine.
However, if at least one MB of storage is available for password scrambling, Catena-

Butterfly should run well. If this is too fast, we recommend increasing the pepper
value, or, maybe preferably, the value of λ.

Usage scenarios. Three typical usage scenarios for a password scrambler PS are the
following:

1. Password-based authentication. Given a triple (username, salt, PS(salt, pwd)), a
user with a given username is authenticated by typing a password pwd ′, such that

PS(salt, pwd ′) = PS(salt, pwd).

This can be used to log in at a server, providing a service for a multitude of different
users, or at a machine servicing a single user.

2. Password-based key derivation. A value

key := PS(salt, pwd)

is used as a cryptographic key.

3. Proof of work / proof of space. The prover has to find a specific X, such that
PS(X) satisfies a statistically rare property p. This means, the prover searches for

an input X such that p(PS(X)) = 1 holds.

This is supposed to be a challenging task for the prover, while the verifier, given
pwd , just needs to compute PS(pwd) once and then check the property. As a
simple example, p(y) = 1 could mean “the n least significant bits of y are 0”.
For a well-designed password scrambler, the prover should need to call PS about
2n times, the verifier only once. Such schemes have been discussed as a defense
against spam (the sender of an email would have to perform a proof of work or
space in order to prevent them from sending emails to hundreds of thousands of
receivers) [47]. They also have been used for cryptocurrencies [31].

45



7. Design Discussion

Regarding the first scenario, security against cache-timing and garbage-collector attacks
is highly important. It has recently been shown that cache-timing attacks can be used to
perform attacks on virtual machines, even if the attack program is running on a different
core than the defender’s program [27].
Also regarding the first scenario, maximizing the amount of used memory may not

always be feasible. On some low-end systems, so much memory may just be unavailable.
On high-end servers, allocating so much memory may hinder other processes running
on the same server. In fact, a log-in process requiring too much memory may ease
denial-of-service attacks.
For the remaining two scenarios, cache-timing and garbage-collector attacks are less

of an issue, and large amounts of memory should usually be available for the defender.
Thus, the first scenario may require Catena-Butterfly, while the second and third
may benefit from Catena-Dragonfly.

Adversaries’ capabilities. We distinguish adversaries by the hardware they are using
for their attacks:

1. Typical password crackers, pragmatically using cheap off-the-shelf hardware for
their purpose, e.g., GPUs.

2. Low-cost hardware-based adversaries, using low-cost reprogrammable hardware,
e.g., FPGAs.

3. Clock-cycle thieves, performing password-cracking on a bot-net with hundreds or
thousands of machines.

4. High-end adversaries with a multi-million budget, who can afford to build dedi-
cated hardware, e.g., ASICs.

Regarding the first two types of adversaries, the limited memory allocated by Catena-

Butterfly is likely to cause trouble for a massively parallel adversary. The third type
of adversary would be kind of indifferent to the choice between Catena-Butterfly

and Catena-Dragonfly since the range of machines being part of a bot-net is similar
to the range of defenders’ machines Catena has been designed for. To maximize the
fourth adversary’s cost, we would recommend the usage of Catena-Dragonfly with
maximal memory, if the defender can afford it.

7.2. Justification of the Generic Design

Catena can be seen as a mode of operation for a cryptographic hash function H, an
eventually reduced version H ′ of a cryptographic hash function, and a (λ)-memory-hard
function flap, and therefore, it fulfills the properties of a generic design. Alternatively,
one can design a primitive password scrambler of its own right, with the structure of
Catena, but internally using something similar to the round- or step-function of a

46



7. Design Discussion

cryptographic primitive. This approach would lead to a faster but less flexible password
scrambler which would allow to allocate more memory and therefore – eventually – to
hinder the adversary more.

Advantages of our Generic Design. Catena inherits the security assurance and the
cryptanalytic attempts from the underlying hash function and the function flap, whereas
a primitive password scrambler could not inherit security assurance from an underlying
primitive. Furthermore, Catena is easy to analyze since the underlying structure is
defined by a cryptographic primitive and a well-analyzed graph-based structure. There-
fore, cryptanalysts can benefit from decades of experience. Finally, it is quite easy to
replace the cryptographic hash function, e.g., for performance or security issues, which
leads to incompatible variants of Catena. This diversity can frustrate well-funded ad-
versaries using fast but expensive non-programmable hardware for password-cracking:
For each variant of Catena, they must build new hardware – or have to adapt existing
hardware.

Disadvantages of a Primitive Password Scrambler. Note that a primitive password
scrambler would actually be a new type of primitive. Thus, cryptographers would have to
develop new methods for cryptanalysis, and understand new attack surfaces, such as 1)
the garbage-collector attack and 2) disproving lower bounds from the pebble game. This
would be a scientifically interesting development, and we hope some people will actually
design primitive password scramblers for PHC. But this would add more years to the
time to wait before deploying the new password scrambler since many cryptographic
primitives have been broken within a few years after their publications. Primitives that
have been deeply analyzed without researchers finding an attack gain confidence in their
security, over the years. Note that it is not sufficient to just wait a couple of years before
the adoption of a new primitive. One needs to catch the cryptanalysts’ attention and
make them try to find attacks against the primitive.

47



Chapter 8
Usage

The discussion in this section is done under the reasonable assumption that the param-
eters λ, glow, f lap, γ, and m are fixed values.

8.1. Catena for Proof of Work

The concept of proofs of work was introduced by Dwork and Naor [18] in 1992. The prin-
ciple design goal was to combat junk mail under the usage of CPU-bounded functions,
i.e., the goal was to gain control over the access to shared resources. The main idea is
“to require a user to compute a moderately hard, but not intractable, function in order
to gain access to the resource ” [18]. Therefore, they introduced so called CPU-bound
pricing functions based on certain mathematical problems which may be hard to solve
(depending on the parameters), e.g., extracting square roots modulo a prime. Tromp
recently proposed the “first trivially verifiable, scalable, memory-hard and tmto-hard
proof-of-work system” in [47].
As an advancement to CPU-bound function,Abadi et al. [1], and Dwork et al. [17]

considered moderately hard, memory-bound functions, since memory access speeds do
not vary so much on different machines like CPU accesses. Therefore, they may behave
more equitably than CPU-bound functions. These memory-bound function base on
a large table which is randomly accesses during the execution, causing a lot of cache
misses. Dwork et al. presented in [19] a compact representation for this table by using a
time-memory trade-off for its generation. Dziembowski et al. [21] as well as Ateniese et
al. [3] put forward the concept of proofs of space, i.e., they do not consider the number
of accesses to the memory (as memory-bound function do) but the amount of disk space
the prover has to use. In [21], the authors proposed a new scheme using “graphs with
high pebbling complexity and Merkle hash-trees”.
For Catena, there exist at least two possible attempts to be used for proofs of work.

We denote by C the client which has to fulfill the challenge to gain access to a server S.
Furthermore, the methods explained below work for all introduced instances.

48



8. Usage

Guessing Secret Bits (Pepper). At the beginning, S chooses fixed values for pwd , t, s
and ghigh, where s denotes a randomly chosen k-bit salt value, where p bits of s are
secret, i.e., p-bit pepper with p ≤ k. Then, S computes h = Catena(pwd , t, s, g) and
sends the tuple (pwd , t, s[0,k−p−1], ghigh, h, p) to C, where s[0,k−p−1] denote the k−p least
significant bits of s (the public part). Now, C has to guess the secret bits of the salt by
computing h′ = Catena(pwd , t, s′, ghigh) about 2

p times and comparing if h = h′. If so,
C gains access to S. The effort of C is given by about 2p computations of Catena (and
about 2p comparisons for h = h′). Hence, the effort of C is scalable by adapting p.

Guessing the Correct Password. In this scenario S chooses an e-bit password pwd , a
tweak t, a salt s, and the garlic ghigh. Then, S computes h = Catena(pwd , t, s, ghigh)
and sends the tuple (t, s, ghigh, e, h) to C. The client C then has to guess the password
by computing about 2e times h′ = Catena(pwd ′, t, s, ghigh) for different values of pwd

′,
and comparing if h′ = h. If so, C gains access to S. The effort of C is given by about
2e computations of Catena (and about 2e comparisons for h = h′). Hence, in this case
the effort of C is scalable by adapting the length e of the password. Furthermore, S can
adjust the effort of C by excluding e from the tuple sent to C. Then, since C does not
know the length of the original password, the time for finding pwd ’ with pwd ′ = pwd
highly depends on the way C performs password cracking. Note that the latter may
not really be suitable for the proof-of-work scenario since a prover with experience in
password cracking can access the server significantly faster than a non-expert.

8.2. Catena in Different Environments

Backup of User-Database. When maintaining a database of user data, e.g., password
hashes, a storage provider (server) sometimes store a backup of their data on a third-
party storage, e.g., a cloud. This implies that the owner looses control over its data, which
can lead to unwanted publication. Therefore, we highly recommend to use Catena in
the keyed password hashing mode (see Section 3.2). Thus, the security of each password
is given by the underlying secret key and does not longer solely depend on the strength
of password itself. Note that the key must be kept secret, i.e., it must not be stored
together with the backup.

Using Catena with Multiple Number of Cores. Catena is initially designed to run
on a modern single-core machine. To make use of multiple cores during the legiti-
mate login process, one can apply the pepper approach. Therefore, p bits of the
salt are kept secret, i.e., when one is capable of using b cores, it would choose p =
log2(b). During the login process, the i-th core will then compute the value hi =
Catena(pwd , t, s0,...,|s|−2 || i, ghigh) for i = 0, . . . , b − 1. The login is successful, if and
only if one of the values hi is valid. This approach is fully transparent for the user, since
due to the parallelism, the login time is not effected. Nevertheless, the total memory
usage and the computational effort are increased by a factor b. This also holds for an

49



8. Usage

Algorithm 6 Catena-KG

Input: pwd {Password}, t′ {Tweak}, s {Salt}, glow {Min Garlic}, ghigh {Garlic}, m
{Output Length}, γ {Public Input}, ℓ {Key Size}, I {Key Identifier}

Output: k {ℓ-Bit Key Derived from the Password}
1: x← Catena(pwd, t′, s, glow, ghigh,m, γ) {with m = |H(·)|}
2: k ← ∅
3: for i = 1, . . . , ⌈ℓ/n⌉ do
4: k ← k || H(i || I || ℓ || x)
5: end for
6: return truncate(k, ℓ) {truncate k to the first ℓ bits}

adversary, since it has to try all possible values for the pepper p to rule out a password
candidate.

Low-Memory Environments. The application of the server relief technique leads to
significantly reduced effort on the side of the server for computing the output of Catena

by splitting it into two functions P (typically flap) andH, where P is time- and memory-
demanding and H is efficient. Obviously, the application of this technique makes most
sense when the server has to administrate a large amount of requests in little time, e.g.,
social networks. Then, each client has to compute an intermediate hash y = P (·) and
the server only has to compute h = H(y) for each y, i.e., for each user.
On the other hand, e.g., if Catena is used in the proof-of-work scenario, i.e., a client

has to proof that it took a certain amount of time and memory to compute the output
of Catena, the application of server relief does not make sense.

8.3. The Key-Derivation Function Catena-KG

In this section we introduce Catena-KG – a mode of operation based on Catena,
which can be used to generate different keys of different sizes (even larger than the
natural output size of Catena, see Algorithm 6). To provide uniqueness of the inputs,
the domain value d of the tweak is set to 1, i.e., the tweak t′ is given by

t′ ← H(V ) || 0x01 || λ || m || |s| || H(AD).

Note that for key derivation is makes no sense to give the user control over the output
length m of Catena. It has only control over the output of Catena-KG by adapting ℓ.
Thus, within Catena-KG, the value for m is set to default, i.e., the output size of the
underlying hash function. The call to Catena is followed by an output transform that
takes the output x of Catena, a one-byte key identifier I, and a parameter ℓ for the key
length as the input, and generates key material of the desired output size. Catena-KG

is even able to handle the generation of extra-long keys (longer than the output size of

50



8. Usage

H), by applying H in Counter Mode [20]. Note that longer keys do not imply improved
security, in that context.
The key identifier I is supposed to be used when different keys are generated from the

same password. For example, when Alice and Bob set up a secure connection, they may
need four keys: an encryption and a message authentication key for messages from Alice
to Bob, and another two keys for the opposite direction. One could argue that I should
also become a part of the associated data. But actually, this would be a bad move, since
setting up the connection would require legitimate users to run Catena several times.
However, the adversary can search for the password for one key, and just derive the
other keys, once that password has been found. For a given budget for key derivation,
one should rather employ one single call to Catena with larger security parameters and
then run the output transform for each key.
In contrast to the password hashing scenario where a user wants to perform a log-

in without noticeable delay, users may tolerate a delay of several seconds to derive an
encryption key from a password process [48], e.g., when setting up a secure connection,
or when mounting a cryptographic file system. Thus, for Catena-KG, we recommend
to use ghigh = 22 (when instantiated with a BRGg

λ) and ghigh = 17 (when instantiated
with a DBGg

λ).

Security Analysis. It is easy to see that Catena-KG inherits its memory-hardness
from Catena (see Chapter 6, Theorems 6.1 and 6.2) since it invokes Catena (Line 1
of Algorithm 6). Next, we show that Catena-KG is a good pseudorandom function
(PRF) in the random oracle model. Again, as in the proof presented in Section 6.3, we
assume that H = H ′.

Theorem 8.1 (PRF Security of Catena-KG). In the random oracle model we
have

AdvPRF
Catena-KG(q, t) =

∣

∣

∣
Pr[ACatena-KG ⇒ 1]− Pr[A$ ⇒ 1]

∣

∣

∣

≤
(q · ghigh + q)2

2n
+Advcoll

F (q · ghigh).

Proof. Suppose that H is modeled as random oracle. For the sake of simplification, we
omit the truncation step and let the adversary always get access to the untruncated key
k. Suppose xi denotes the output of Catena of the i-th query. In the case xi 6= xj

for all values with 1 ≤ i < j ≤ q, the output k is always a random value, since H is
always invoked with a fresh input (see Line 4, Algorithm 6). The only chance for an
adversary to distinguish Catena-KG(·) from the random function $(·) is a collision in
Catena. The probability for this event can be upper bounded by similar arguments as
in the proof of Theorem 4.2. �

51



Chapter 9
Lessons Learned: The Tweak

After publishing Catena at the IACR ePrint server, and even more after submitting
Catena to the first round of the Password Hashing Competition (PHC), we received a
lot of suggestions, potential improvements, critique, ect. We are grateful for this input,
which turned out to be a valuable resource for ideas to improve Catena.

First-Round. The core operation of first-round Catena worked as follows:

1. Parameters. Determine the storage size 2g, and a cryptographic primitive H.

2. Initialization. Derive v0 from H(x) and vi from vi−1, where x denotes the hash
of the tweak, the password, and the salt.

3. Memory-Hard Transformation. Transform v0, . . . , v2g−1 into new values, based
on the memory-hard bit-reversal structure.

4. Output. H(v2g−1).

Proposed Tweak. The main differences between first-round-Catena and the proposed
new version are the following:

1. Parameters. Determine the storage size 2g, a strong cryptographic primitive H,
and a “light” cryptographic primitive H ′.

We anticipate H ′ to be a “reduced-round” version of H, though H ′ = H is also
possible.

2. Initialization. Derive v0 from H(x) (where x is derived as above) and vi from
vi−1 and vi−2. Then apply an (optional) random step Γ: Derive vi from vi and vj .
The indices i and j are pseudorandom, deterministically generated from a public
value (typically the salt).

52



9. Lessons Learned: The Tweak

3. Memory-Hard Transformation. Transform v0, . . . , v2g−1 into new values, based
on a memory-hard structure. The proposed version still supports the bit-reversal
structure, but, as an alternative, also the double-butterfly structure.

4. Output. H(v2g−1) (no modification).

Note that the proposed tweak generalizes the Catena framework. In other words, the
first-round version is essentially a restricted set of instances of the proposed tweak: Set
H ′ = H, skip the optional random step in the initialization, and use the bit-reversal
structure. The only remaining difference in the core function1 is the derivation of vi
from two values, vi−1 and vi−2, where the first-round version used vi−1, only.

Background for the Double-Butterfly Structure. Initially, we proposed a stack of λ
bit-reversal graphs for Catena, and we claimed this to be λ-memory-hard. Unfortu-
nately, it turned out that such a stack only provides 1-memory-hardness. Alexander
Biryukov and Dmitry Khovratovich pointed out a flaw in our proof of the time-memory
tradeoff by providing a tradeoff cryptanalysis [9].
Thus, we decided to give the user the choice: Either stick with 1-memory-hardness by

using the fast bit-reversal structure, and maximize the memory, or use a decent amount
of memory and maximize the pain for memory-constrained adversaries by λ-memory
hardness, now based on a stack of double-butterfly graphs.

Background for the“Light”Primitive H ′. Since the first publication of Catena, many
people asked us to replaceH by a weaker and faster function. Note thatH is supposed to
be cryptographically very strong and thus cannot be very fast. Such a change would allow
us to speed-up the internal operations of Catena. Consequently, we would increase the
garlic, while maintaining the same overall speed as before the change. Bill Cox was the
first to suggest this. He even implemented this approach in his “waywardgeek” branch
of Catena. This is, of course, entirely in the spirit of Catena, which we understand
as a framework that can be instantiated by its users, according to their needs.
But by default, our choice forH is BLAKE2b, a cryptographically strong hash function

that has essentially been designed to behave like a“random oracle” for a user who has full
control over the inputs. In the context of a Catena, the user may choose the password,
but then H is iterated thousands of times, without the user choosing any inputs to H.
Using a cryptographically strong H appears to be an overkill.
On the other hand, our goal for Catena was not to design a new primitive, but to

design a framework, using an underlying primitive H. And we wanted to claim the
security of Catena, based on the (plausible) assumption that H is secure.
Moreover, our focus was on using “sufficiently large”memory to defend against typical

password crackers with massively parallel off-the-shelf hardware, such as GPUs, and we
where able to do so without an ultra-fast H. While we still consider using a “sufficiently

1There are also some minor differences in the overall structure, such as computing flap(⌈glow/2⌉, x, γ)
in Line 2 of Algorithm 1, which serves the purpose of hindering weak garbage-collector attacks.

53



9. Lessons Learned: The Tweak

large” memory as the essential security feature for any memory-demanding password
hashing function, we now understand that further increasing the memory usage beyond
the “sufficiently large” point can make sense, e.g., as a defense against password crackers
using dedicated hardware. Thus, we eventually decided to speed-up Catena internally,
by including the “light” primitive H ′.
Nevertheless, we still desired to claim the security of Catena, based on a (plausible)

assumption about the security of H, not on an (implausible) assumption about the secu-
rity of H ′. Fortunately, a typical H iterates some“round function” several times, though
the “round function” itself is not very strong. This justifies the idea to define Catena

by iterating the “round function” of H thousands of times, wherever we originally have
been iterating H itself thousands of times. We (very informally) argue that any severe
weakness of such an instance of Catena would indicate that iterating the “round func-
tion” of H is not secure, which on the other hand would raise doubts about the security
of H itself.
The hash function BLAKE2b, our default choice for H, iterates a round 12 times.

Our default choice fore H ′ is a version of BLAKE2b using a single round.

Background for the Modified Initialization. The first change is determining vi not
only from vi−1, but also from vi−2. The main reason for this change is the introduction
of a cryptographically “weak”H ′, and the avoidance of fixed points for H ′, i.e., values
vi with H ′(vi) = vi. For a full-blown cryptographic hash function H it would be very
unlikely to choose a password such that some fixed-point vi is generated, but for some
reduced-round primitive H ′, this probability may be higher.
The second change is the introduction of the (optional) random layer in the initial-

ization. Note that the bit-reversal permutation has a very regular structure, e.g., it is
its own inverse. The time-memory-tradeoff cryptanalysis presented in [9] makes use of
such regularities. We conjecture that introducing another layer with a mostly irregular
structure makes such tradeoff attacks harder. We leave it as an open problem to prove
or disprove this conjecture. We have seen the idea to use a layer with pseudorandom
indices at a presentation given by Dmitry Khovratovich [8]. Though, he did not mention
how to initialize the random generation for the indices. We argue that the salt is an ex-
cellent choice. First, the salt is usually assumed to be public and thus, does not need to
be hidden from the adversary. Under this assumption, salt-dependent memory accesses
do not leak secret information to cache-timing adversaries. Second, this increases the
cost for time-memory tradeoff attacks on dedicated hardware, especially on ASICs. A
fixed salt implies a fixed memory-access pattern, which one could easily implement on
an ASIC. Changing the salt implies an entirely different memory-access pattern. But,
creating new ASICs for every new salt would hardly be economic. On the other hand,
ASICs with support for different salts must support different memory-access patterns
– which would turn them into almost “reprogrammable” hardware.

54



9. Lessons Learned: The Tweak

Slow-Memory and Cache-Timing Attacks. One major feature of the Catena struc-
ture are the password-independent memory accesses. This feature is both a sacrifice and
a blessing. It is a sacrifice, because it allows the adversary to reduce the cost for full-
memory password guessing by using cheap memory and mounting slow-memory attacks
[44]. It is a blessing, because it prevents cache-timing attacks.
It seems that many other PHC candidates neglect the danger from cache-timing at-

tacks, for example: “cache-timing attacks are extremely hard to mount on a remote
machine, so we presume their application on Argon being purely theoretical” [10]. Recent
results on cache-timing attacks seem to contradict this reasoning, e.g., see [27] for prac-
tical cache-timing attacks, where target and victim are residing on different cores and
separated by virtual machine boundaries. Thus, vulnerabilities to cache-timing attacks
could introduce dramatic weaknesses, e.g., in cloud-computing environments.
Some candidates, such as Lyra2, follow a hybrid approach: A first phase satisfies

password-independent memory accesses and a second phase reads or writes the memory
at password-dependent locations [44]. The second phase hinders slow-memory attacks,
while the first phase is a good defense against cheapening password-guessing in a cache-
timing scenario.
Nevertheless, cache-timing attacks are not always about reducing the cost for password-

guessing. Sometimes they are about enabling password-guessing. This is a somewhat
critical situation: If one uses an old-style password scrambler, e.g., md5crypt, or even
stores passwords in the clear, password-guessing is impossible if the password file has
not been compromised. Of course, it makes sense to defend against a potential password
compromise. However, switching to a modern memory-intense password scrambler, e.g.,
Lyra2, can backfire. Now, the adversary can mount a password-guessing attack even
without the password file being compromised, just by observing the memory-access pat-
tern. A password-independent memory-access pattern would avoid this.

Comment for the PHC Committee. The proposed modifications are based on our
conclusions from comments and criticism we received, and on discussions at the PHC
mailing list. We believe that these modifications make Catena a better and
more general password scrambler, while maintaining its original structure
and design ideas. But, we will forgo any modifications, if these are depreciated by the
PHC committee, or considered too heavy for a “tweak”.

Future Work. Our work on Catena is part of an ongoing research project. We would
like to improve Catena even further, and we are open to any such request from the
PHC committee, or the public in general. Some ideas, which we consider, even though
they did not make it into our second-round submission, are the following:

• Further techniques to raise the cost for ASIC-based attacks, without significantly
increasing the cost of a defender. One approach could be replacing the “light”hash
function H ′ by 64-bit multiplications.

55



Chapter 10
Acknowledgement.

Thanks to Bill Cox, Ben Harris, Eik List, Colin Percival, Stephen Touset, Steve Thomas,
and Alexander Peslyak for their helpful hints and comments, as well as fruitful discus-
sions. Also, we thank Sascha Schmidt for the current reference implementation, Alexan-
der Biryukov and Dmitry Khovratovich for their time-memory tradeoff cryptanalysis of
Catena-BRG, and Axel von dem Bruch for his implementation of Catena in Java [50].
Finally, we thank the members of the PHC committee for their work, and for promoting
Catena into the second round of PHC.

56



Chapter 11
Legal Disclaimer

To the best of our knowledge, neither Catena, the BLAKE2b Function Family, nor
the structure of the bit-reversal graph or the double-butterfly graph are encumbered by
any patents. We have not, and will not apply for patents on any part of our design
or anything in this document. Furthermore, we assure that there are no deliberately
hidden weaknesses within the structure or the source code of Catena.

57



Bibliography

[1] Martin Abadi, Michael Burrows, and Ted Wobber. Moderately Hard, Memory-
Bound Functions. In NDSS, 2003.

[2] Kazumaro Aoki, Jian Guo, Krystian Matusiewicz, Yu Sasaki, and Lei Wang. Preim-
ages for Step-Reduced SHA-2. In Advances in Cryptology - ASIACRYPT 2009, 15th
International Conference on the Theory and Application of Cryptology and Infor-
mation Security, Tokyo, Japan, December 6-10, 2009. Proceedings, pages 578–597,
2009.

[3] Giuseppe Ateniese, Ilario Bonacina, Antonio Faonio, and Nicola Galesi. Proofs of
Space: When Space is of the Essence. IACR Cryptology ePrint Archive, 2013:805,
2013.

[4] Jean-Philippe Aumasson. Password Hashing Competition. https://

password-hashing.net/call.html. Accessed September 3, 2015.

[5] Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-O’Hearn, and Christian
Winnerlein. BLAKE2: Simpler, Smaller, Fast as MD5. In Michael J. Jacobson Jr.,
Michael E. Locasto, Payman Mohassel, and Reihaneh Safavi-Naini, editors, ACNS,
volume 7954 of Lecture Notes in Computer Science, pages 119–135. Springer, 2013.

[6] S.M. Bellovin and M. Merrit. Encrypted Key Exchange: Password-Based Protocols
Secure Against Dictionary Attacks. Proceedings of the I.E.E.E. Symposium on
Research in Security and Privacy (Oakland), 1992.

[7] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. The Keccak SHA-3 sub-
mission. Submission to NIST (Round 3), 2011.

[8] Alex Biryukov, Daniel Dinu, Johann Groschaedl, and Dmitry Khovratovich. De-
sign and analysis of memory-hard functions. Presentation at Early Symmetric
Crypto (ESC) in Clervaux, Luxembourg, 2015. https://www.cryptolux.org/

mediawiki-esc2015/images/1/1b/Esc2015.pdf.

[9] Alex Biryukov and Dmitry Khovratovich. Tradeoff cryptanalysis of Catena. PHC
mailing list: discussions@password-hashing.net.

58

https://password-hashing.net/call.html
https://password-hashing.net/call.html
https://www.cryptolux.org/mediawiki-esc2015/images/1/1b/Esc2015.pdf
https://www.cryptolux.org/mediawiki-esc2015/images/1/1b/Esc2015.pdf


Bibliography

[10] Alex Biryukov and Dmitry Khovratovich. Argon v1: Password Hashing
Scheme. Password Hashing Competition, 1st round submission, 2014. https://

password-hashing.net/submissions/specs/Argon-v1.pdf.

[11] Joseph Bonneau. The science of guessing: analyzing an anonymized corpus of 70
million passwords. In 2012 IEEE Symposium on Security and Privacy, May 2012.

[12] William F. Bradley. Superconcentration on a Pair of Butterflies. CoRR,
abs/1401.7263, 2014.

[13] Tom Caddy. FIPS 140-2. In Henk C. A. van Tilborg, editor, Encyclopedia of
Cryptography and Security. Springer, 2005.

[14] J. W. Cooley and J. W. Tukey. An Algorithm for the Machine Calculation of
Complex Fourier Series. Math. Comput., 19:297–301, 1965.

[15] Solar Designer. Enhanced challenge/response authentication algo-
rithms. http://openwall.info/wiki/people/solar/algorithms/

challenge-response-authentication. Accessed January 22, 2014.

[16] Ulrich Drepper. Unix crypt using SHA-256 and SHA-512. http://www.akkadia.

org/drepper/SHA-crypt.txt. Accessed May 16, 2013.

[17] Cynthia Dwork, Andrew Goldberg, and Moni Naor. On Memory-Bound Functions
for Fighting Spam. In CRYPTO, pages 426–444, 2003.

[18] Cynthia Dwork and Moni Naor. Pricing via Processing or Combatting Junk Mail.
In CRYPTO, pages 139–147, 1992.

[19] Cynthia Dwork, Moni Naor, and Hoeteck Wee. Pebbling and Proofs of Work. In
CRYPTO, pages 37–54, 2005.

[20] Morris Dworkin. Special Publication 800-38A: Recommendation for Block Cipher
Modes of Operation. National Institute of Standards, U.S. Department of Com-
merce, December 2001.

[21] Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and Krzysztof
Pietrzak. Proofs of Space. IACR Cryptology ePrint Archive, 2013:796, 2013.

[22] Stefan Dziembowski, Tomasz Kazana, and Daniel Wichs. Key-Evolution Schemes
Resilient to Space-Bounded Leakage. In CRYPTO, pages 335–353, 2011.

[23] Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare, Ta-
dayoshi Kohno, Jon Callas, and Jesse Walker. The Skein Hash Function Family.
Submission to NIST, 2010.

[24] Christian Forler, Stefan Lucks, and Jakob Wenzel. Catena: A Memory-Consuming
Password Scrambler. Cryptology ePrint Archive, Report 2013/525, 2013. http://
eprint.iacr.org/.

59

https://password-hashing.net/submissions/specs/Argon-v1.pdf
https://password-hashing.net/submissions/specs/Argon-v1.pdf
http://openwall.info/wiki/people/solar/algorithms/challenge-response-authentication
http://openwall.info/wiki/people/solar/algorithms/challenge-response-authentication
http://www.akkadia.org/drepper/SHA-crypt.txt
http://www.akkadia.org/drepper/SHA-crypt.txt
http://eprint.iacr.org/
http://eprint.iacr.org/


Bibliography

[25] Jian Guo, San Ling, Christian Rechberger, and Huaxiong Wang. Advanced Meet-
in-the-Middle Preimage Attacks: First Results on full Tiger, and improved Results
on MD4 and SHA-2. ASIACRYPT’10, volume 6477 of LNCS, 2010.

[26] Martin E. Hellman. A Cryptanalytic Time-Memory Trade-Off. IEEE Transactions
on Information Theory, 26(4):401–406, 1980.

[27] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. Jackpot stealing information
from large caches via huge pages. Cryptology ePrint Archive, Report 2014/970,
2014. http://eprint.iacr.org/.

[28] Poul-Henning Kamp. The history of md5crypt. http://phk.freebsd.dk/sagas/

md5crypt.html. Accessed May 16, 2013.

[29] Dmitry Khovratovich, Christian Rechberger, and Alexandra Savelieva. Bicliques for
Preimages: Attacks on Skein-512 and the SHA-2 Family. In FSE, pages 244–263,
2012.

[30] Thomas Lengauer and Robert Endre Tarjan. Asymptotically Tight Bounds on
Time-Space Trade-offs in a Pebble Game. J. ACM, 29(4):1087–1130, 1982.

[31] Sérgio Martins and Yang Yang. Introduction to bitcoins: a pseudo-anonymous elec-
tronic currency system. In Center for Advanced Studies on Collaborative Research,
CASCON ’11, Toronto, ON, Canada, November 7-10, 2011, pages 349–350, 2001.

[32] Gordon E. Moore. Cramming more Components onto Integrated Circuits. Elec-
tronics, 38(8), April 1965.

[33] Krishna Neelamraju. Facebook Pages: Usage Patterns | Recommend.ly.
http://blog.recommend.ly/facebook-pages-usage-patterns/. Accessed May
16, 2013.

[34] C. Newman, A. Menon-Sen, A. Melnikov, and N. Williams. Salted challenge re-
sponse authentication mechanism (scram) sasl and gss-api mechanisms. RFC 5802
(Proposed Standard), July 2010.

[35] Nvidia. Nvidia GeForce GTX 680 - Technology Overview, 2012.

[36] NIST National Institute of Standards and Technology. FIPS 180-2: Secure Hash
Standard. April 1995. See http://csrc.nist.gov.

[37] Michael S. Paterson and Carl E. Hewitt. Comparative Schematology. In Jack B.
Dennis, editor, Record of the Project MAC Conference on Concurrent Systems and
Parallel Computation, chapter Computation schemata, pages 119–127. ACM, New
York, NY, USA, 1970.

[38] Colin Percival. Stronger Key Derivation via Sequential Memory-Hard Functions.
presented at BSDCan’09, May 2009, 2009.

60

http://eprint.iacr.org/
http://phk.freebsd.dk/sagas/md5crypt.html
http://phk.freebsd.dk/sagas/md5crypt.html
http://blog.recommend.ly/facebook-pages-usage-patterns/


Bibliography

[39] Phillip Rogaway. Efficient Instantiations of Tweakable Blockciphers and Refine-
ments to Modes OCB and PMAC. In Pil Joong Lee, editor, Advances in Cryptology
- ASIACRYPT 2004, 10th International Conference on the Theory and Applica-
tion of Cryptology and Information Security, Jeju Island, Korea, December 5-9,
2004, Proceedings, volume 3329 of Lecture Notes in Computer Science, pages 16–
31. Springer, 2004.

[40] Semiocast SAS. Brazil becomes 2nd country on Twitter, Japan 3rd — Netherlands
most active country. http://goo.gl/QOeaB. Accessed May 16, 2013.

[41] J. Savage and S. Swamy. Space-time trade-offs on the FFT algorithm. Information
Theory, IEEE Transactions on, 24(5):563 – 568, sep 1978.

[42] John E. Savage and Sowmitri Swamy. Space-Time Tradeoffs for Oblivious Interger
Multiplications. In ICALP, pages 498–504, 1979.

[43] Ravi Sethi. Complete Register Allocation Problems. SIAM J. Comput., 4(3):226–
248, 1975.

[44] Marcos Simplicio, Leonardo Almeida, Paulo dos Santos, and Paulo Barreto. The
Lyra2 reference guide. Password Hashing Competition, 2nd round submission, 2015.
https://password-hashing.net/submissions/specs/Lyra2-v2.pdf.

[45] Sowmitri Swamy and John E. Savage. Space-Time Tradeoffs for Linear Recursion.
In POPL, pages 135–142, 1979.

[46] Martin Tompa. Time-Space Tradeoffs for Computing Functions, Using Connectivity
Properties of their Circuits. In STOC, pages 196–204, 1978.

[47] John Tromp. Cuckoo Cycle; a memory-hard proof-of-work system. Cryptology
ePrint Archive, Report 2014/059, 2014. http://eprint.iacr.org/.

[48] Meltem Sönmez Turan, Elaine B. Barker, William E. Burr, and Lidong Chen. SP
800-132. Recommendation for Password-Based Key Derivation: Part 1: Storage
Applications. Technical report, NIST, Gaithersburg, MD, United States, 2010.

[49] Sebastiano Vigna. An experimental exploration of marsaglia’s xorshift generators,
scrambled. CoRR, abs/1402.6246, 2014.

[50] Axel von dem Bruch (Beloumi). PasswordHashing. https://github.com/Beloumi/
Crypto-Eck/tree/master/PasswordHashing, 2015.

61

http://goo.gl/QOeaB
https://password-hashing.net/submissions/specs/Lyra2-v2.pdf
http://eprint.iacr.org/
https://github.com/Beloumi/Crypto-Eck/tree/master/PasswordHashing
https://github.com/Beloumi/Crypto-Eck/tree/master/PasswordHashing


Appendix A
BLAKE2b-1

BLAKE2b-1 describes a modification of BLAKE2b reduced to one single round instead
of twelve rounds. The difference between the function BLAKE2b-1 and the original
BLAKE2b can be seen in Algorithm 7, where the lengths are given in bytes.

Algorithm 7 BLAKE2b-1 (left) and BLAKE2b (right)

Input: I1 {Input1}, I2 {Input2},
v {Vertex Index}

Output: h {Hash}

1: S.buf ← I1 || I2
2: S.buflen← 128
3: increment counter(S, S.buflen)
4: set last block(S)
5: r ← v mod 12
6: compress(S, r)
7: h← S.h
8: return h

Input: I {Input Array}, l {Input Length},
m {Output Length}

Output: h {Hash}
1: blake2b init(S,m) {Init State}
2: for i from 0 to (⌊l/128⌋ − 1) do
3: S.buf ← I[i]
4: S.buflen← 128
5: increment counter(S, S.buflen)
6: compress(S)
7: end for

8: S.buf ← I[⌊l/128⌋] || 0∗

9: S.buflen← l mod 128
10: increment counter(S, S.buflen)
11: set last block(S)

12: compress(S)
13: h← S.h
14: return h

Following from Line 1 in Algorithm 7 (right), BLAKE2b initializes the internal state S
in every invocation, whereas BLAKE2b-1 does not. Thus, for Catena, the internal state
S is only (re)initialized when computing the first value of each layer of the underlying
graph structure using H as specified for example in Algorithms 4 and 5. This assures
that twelve invocations of BLAKE2b-1 are as close as possible to the original BLAKE2b
and also saves computation time as shown in Table A.1. To further ensure this similarity,
we compute the round index as shown in Line 5 of Algorithm 7 (left).
The functions blake2b init, increment counter, and set last block are used as speci-

62



A. BLAKE2b-1

Algorithm Medien Clocks per Byte

BLAKE2b-1 2.44
BLAKE2b-1 without initialization 0.86
BLAKE2b 9.81

Table A.1.: Benchmark comparison of BLAKE2b-1, BLAKE2b-1 without initialization,
and BLAKE2b. Timings are measure on an Intel(R) Core(TM) i7-3930M
CPU @ 3.20GHz system.

fied in the reference implementation of BLAKE2b. For BLAKE2b-1, we fixed the input
length to 128 bytes and neglect the padding since the size of the inputs never changes
when using BLAKE2b-1 within Catena. The compression functions of BLAKE2b-1
and BLAKE2b are shown in Algorithm 8, where σ denotes the message schedule (not
to be confused with the indexing function σ of Catena-Dragonfly).

Algorithm 8 Functions compress of BLAKE2b-1 (left) and BLAKE2b (right)
Input: S {BLAKE2b State}, r {Round Index}
Output: S {Updated BLAKE2b State}
1: v[0 . . . 7]← S.h
2: v[8 . . . 15]← IV
3: v[12, 13]← v[12, 13]⊕ S.t
4: v[14, 15]← v[14, 15]⊕ S.f

5: s[0 . . . 15]← σ[r mod 10][0 . . . 15]
6: v ← G(v, 0, 4, 8, 12, S.buf [s[0]], S.buf [s[1]])
7: v ← G(v, 1, 5, 9, 13, S.buf [s[2]], S.buf [s[3]])
8: v ← G(v, 2, 6, 10, 14, S.buf [s[4]], S.buf [s[5]])
9: v ← G(v, 3, 7, 11, 15, S.buf [s[6]], S.buf [s[7]])
10: v ← G(v, 0, 5, 10, 15, S.buf [s[8]], S.buf [s[9]])
11: v ← G(v, 1, 6, 11, 12, S.buf [s[10]], S.buf [s[11]])
12: v ← G(v, 2, 7, 8, 13, S.buf [s[12]], S.buf [s[13]])
13: v ← G(v, 3, 4, 9, 14, S.buf [s[14]], S.buf [s[15]])

14: S.h← S.h⊕ v[0 . . . 7]⊕ v[8 . . . 15]

Input: S {BLAKE2b State}
Output: S {Updated BLAKE2b State}
1: v[0 . . . 7]← S.h
2: v[8 . . . 15]← IV
3: v[12, 13]← v[12, 13]⊕ S.t
4: v[14, 15]← v[14, 15]⊕ S.f
5: for r from 0 to 11 do

6: s[0 . . . 15]← σ[r mod 10][0 . . . 15]
7: v ← G(v, 0, 4, 8, 12, S.buf [s[0]], S.buf [s[1]])
8: v ← G(v, 1, 5, 9, 13, S.buf [s[2]], S.buf [s[3]])
9: v ← G(v, 2, 6, 10, 14, S.buf [s[4]], S.buf [s[5]])
10: v ← G(v, 3, 7, 11, 15, S.buf [s[6]], S.buf [s[7]])
11: v ← G(v, 0, 5, 10, 15, S.buf [s[8]], S.buf [s[9]])
12: v ← G(v, 1, 6, 11, 12, S.buf [s[10]], S.buf [s[11]])
13: v ← G(v, 2, 7, 8, 13, S.buf [s[12]], S.buf [s[13]])
14: v ← G(v, 3, 4, 9, 14, S.buf [s[14]], S.buf [s[15]])
15: end for

16: S.h← S.h⊕ v[0 . . . 7]⊕ v[8 . . . 15]

63



Appendix B
The Name

The name Catena comes from the Latin word for “chain”. It was chosen based on
the fact that the underlying structure of Catena is given by the BRGg

λ or the DBGg
λ,

where each vertex within these graph depends at least on its predecessor, thus, providing
a sequential structure. More detailed, if one thinks of representing all vertices within
a BRGg

λ or a DBGg
λ to be sorted in their topological order, each vertex vi depends

at least on the vertex vi−1 for 1 ≤ i ≤ (λ + 1) · 2g − 1 (Catena-BRG) or 1 ≤ i ≤
(λ · (2g − 1) + 1) · (2g − 1) (Catena-DBG).

64



Appendix C
Test Vectors

C.1. Test Vectors for Catena-Dragonfly

Lambda: 2
Garlic: 1
Associated data: (0 octets)
Password: 70 61 73 73 77 6f 72 64 (8 octets)
Salt: 73 61 6c 74 (4 octets)
Output: 26 4b 83 7b 14 c4 7b 07 ac 4d f4 6d 61

39 b0 78 c1 f5 5a f6 cd 03 65 ef 9f 0c

28 e8 dd ee a2 0d 73 e5 7f 0f d9 7c 3f

08 5c 34 af 8f 1d 11 44 29 5b dc 07 d5

77 68 0a b2 6c 22 8b 33 15 46 8c 1a

(64 octets)

Lambda: 2
Garlic: 10
Associated data: 64 61 74 61 (4 octets)
Password: 70 61 73 73 77 6f 72 64 (8 octets)
Salt: 73 61 6c 74 (4 octets)
Output: 97 8e 99 44 3b d2 07 dd 7c 26 92 4e c2

00 c9 db aa c2 d4 a4 d8 60 d8 22 e0 12

b8 42 56 e0 e2 5a 3e 7a 87 63 ad e4 5e

2c 12 ec 10 13 6d ea af ca 2d 85 18 ad

d1 22 3f a4 e4 26 02 94 4d c4 5d f4

(64 octets)

65



C. Test Vectors

C.2. Test Vectors for Catena-Butterfly

Lambda: 4
Garlic: 1
Associated data: (0 octets)
Password: 70 61 73 73 77 6f 72 64 (8 octets)
Salt: 73 61 6c 74 (4 octets)
Output: 2b 57 5a 52 12 36 36 cf 20 cb 2d 49 97

59 18 da d1 bd 16 9c a2 59 44 83 38 f4

12 4b 37 7a 27 a6 7d 69 68 ee 13 33 db

82 05 b5 8d a3 97 da 25 d4 34 07 38 d8

ba 82 21 72 5c 54 16 53 18 e2 df 90

(64 octets)

Lambda: 4
Garlic: 10
Associated data: 64 61 74 61 (4 octets)
Password: 70 61 73 73 77 6f 72 64 (8 octets)
Salt: 73 61 6c 74 (4 octets)
Output: 2c fb c1 12 5d b3 db 95 19 d4 34 12 58

61 9c 05 fe 56 3b a1 5d 2e 77 10 01 f1

0c b4 f5 89 7d d1 ee e7 69 12 e5 a0 75

ed 4e b9 c0 40 37 46 01 0c 6e ab a4 01

86 5f a8 9b 1d 21 9b 2d 1e 74 9a b0

(64 octets)

C.3. Test Vectors for Catena-Dragonfly-Full

Lambda: 2
Garlic: 1
Associated data: (0 octets)
Password: 70 61 73 73 77 6f 72 64 (8 octets)
Salt: 73 61 6c 74 (4 octets)
Output: 3e 10 70 76 cd da 86 96 07 7d 8b 0e 61

0b 43 4e 86 59 e1 5c 09 12 33 47 0f 9f

b4 1f 7f ad e1 e1 47 5b 2d 09 32 d3 c9

d1 4c f8 a1 4f 4b af b7 9f f6 58 9c 33

aa 86 ef 9a 7d 9a 44 70 26 ce 40 ce

(64 octets)

66



C. Test Vectors

Lambda: 2
Garlic: 10
Associated data: 64 61 74 61 (4 octets)
Password: 70 61 73 73 77 6f 72 64 (8 octets)
Salt: 73 61 6c 74 (4 octets)
Output: f2 f3 8d 02 e3 27 a9 d5 4b 4b 30 6b cc

e0 db 4a 96 62 b2 c8 e6 4c 45 fb 53 6c

95 8d f8 cd 1d 65 31 f6 99 12 6d d5 31

18 ca 15 ac 8a 17 72 c1 38 16 36 54 b2

23 42 75 16 fd cf aa 22 fd 1d e6 01

(64 octets)

C.4. Test Vectors for Catena-Butterfly-Full

Lambda: 4
Garlic: 1
Associated data: (0 octets)
Password: 70 61 73 73 77 6f 72 64 (8 octets)
Salt: 73 61 6c 74 (4 octets)
Output: 41 8c 2a b1 a8 84 04 24 a1 59 2a bb 9e

aa 0f 3f 3c be 76 4b 13 30 f3 c5 53 83

5f 37 d6 e5 c1 7a b8 a9 f5 6f eb e0 41

75 8c 15 ff 07 e1 48 ee 20 50 cc fa 64

75 75 d3 db 0b bf 4d 32 7c 1e 50 fe

(64 octets)

Lambda: 4
Garlic: 10
Associated data: 64 61 74 61 (4 octets)
Password: 70 61 73 73 77 6f 72 64 (8 octets)
Salt: 73 61 6c 74 (4 octets)
Output: 1b 5e ce d6 bf 1c 4c f3 a1 46 57 f7 2c

48 93 35 ee 49 85 06 e7 b3 0f b5 7f e4

1a f3 46 24 f3 11 1d 16 1a dc fa 41 a9

38 72 89 6d 59 e1 f9 a3 c6 00 0b b2 28

4f 7f b1 0f 1a 95 2a 42 99 f1 d7 a3

(64 octets)

67



C. Test Vectors

C.5. Test Vectors for Keyed Catena-Dragonfly

Lambda: 2
Garlic: 1
Associated data: (0 octets)
Password: 70 61 73 73 77 6f 72 64 (8 octets)
Salt: 73 61 6c 74 (4 octets)
UUID: FF FF FF FF FF FF FF FF (8 octets)
Key: 00 11 22 33 44 55 66 77 88 99 AA BB CC

DD EE FF

(16 octets)

Output: 11 26 20 53 c8 4e 71 ed 1e 1f dd b5

16 6c da b2 94 29 99 b1 41 12 01 70 b8

cf 84 d4 8c da 41 98 3f c9 bc 32 18 8b

68 b3 0a fc 22 36 00 7a bb ee 8d 51 98

37 0b aa 54 33 bf 84 e1 97 1f bc 30 70

(64 octets)

Lambda: 2
Garlic: 10
Associated data: 64 61 74 61 (4 octets)
Password: 70 61 73 73 77 6f 72 64 (8 octets)
Salt: 73 61 6c 74 (4 octets)
UUID: FF FF FF FF FF FF FF FF (8 octets)
Key: 00 11 22 33 44 55 66 77 88 99 AA BB CC

DD EE FF

(16 octets)

Output: 32 cf 47 96 33 61 35 60 ef 49 8d d4 5d

46 9a 52 51 08 ad 0a 2f 3b 7a 4f a3 7f

5c 1a 48 e6 5a bc bd 5a 24 84 cf a5 25

7b 6d c3 37 3f 03 22 23 c5 a7 03 45 7e

0e 8c 6a ee cb 1a 95 15 f2 78 a0 69

(64 octets)

68



C. Test Vectors

C.6. Test Vectors for Keyed Catena-Butterfly

Lambda: 4
Garlic: 1
Associated data: (0 octets)
Password: 70 61 73 73 77 6f 72 64 (8 octets)
Salt: 73 61 6c 74 (4 octets)
UUID: FF FF FF FF FF FF FF FF (8 octets)
Key: 00 11 22 33 44 55 66 77 88 99 AA BB CC

DD EE FF

(16 octets)

Output: 1c 3a f9 7a ce bc 3c 25 92 99 04 91 e0

0c 72 10 84 61 d5 db 2e 48 20 1c 1f 37

be 77 66 4e c4 33 31 45 ab d3 d2 c4 8c

39 53 7d 00 1a 8a b1 da 13 e2 8a a7 3a

c6 40 7f f3 8f f2 7c f7 12 18 63 fa

(64 octets)

Lambda: 4
Garlic: 10
Associated data: 64 61 74 61 (4 octets)
Password: 70 61 73 73 77 6f 72 64 (8 octets)
Salt: 73 61 6c 74 (4 octets)
UUID: FF FF FF FF FF FF FF FF (8 octets)
Key: 00 11 22 33 44 55 66 77 88 99 AA BB CC

DD EE FF

(16 octets)

Output: 89 ba 1f c0 55 00 e9 28 8a bb 2b 88 c7

27 cf 8c 05 9c 42 0f aa 75 d5 7d 42 9c

e8 ec eb 8f c5 37 6d c7 ca f5 87 e1 0e

ba 31 96 e7 6c 59 8e 8d 03 e4 2d f9 d2

59 f1 fd d1 32 1d 0c ac a1 c8 67 2d

(64 octets)

69



C. Test Vectors

C.7. Test Vectors for Keyed Catena-Dragonfly-Full

Lambda: 2
Garlic: 1
Associated data: (0 octets)
Password: 70 61 73 73 77 6f 72 64 (8 octets)
Salt: 73 61 6c 74 (4 octets)
UUID: FF FF FF FF FF FF FF FF (8 octets)
Key: 00 11 22 33 44 55 66 77 88 99 AA BB CC

DD EE FF

(16 octets)

Output: 09 7d d3 5e 11 50 8c 7c b5 2f a2 d6 16

5e 29 84 d3 85 22 1b 85 03 57 d8 28 5c

18 23 2e 99 02 74 0b 77 ee 34 f3 24 9e

6a 1a 30 2c f6 56 c4 48 58 20 d5 03 d1

d6 44 b1 1b ae 3c 2e d4 2c 34 fc a4

(64 octets)

Lambda: 2
Garlic: 10
Associated data: (4 octets)
Password: 70 61 73 73 77 6f 72 64 (8 octets)
Salt: 73 61 6c 74 (4 octets)
UUID: FF FF FF FF FF FF FF FF (8 octets)
Key: 00 11 22 33 44 55 66 77 88 99 AA BB CC

DD EE FF

(16 octets)

Output: 57 b2 53 d0 eb 94 9b 68 d8 24 2f f1 53

a6 88 c3 6d a8 cb 66 11 17 e7 96 10 01

71 d5 e6 cb a5 83 b2 d6 3a f5 0f 94 4a

4f b5 3a 8b a6 79 ba 4d 37 9c b0 09 61

fc ec 20 5c d2 f3 3d a3 42 a1 1b 9c

(64 octets)

70



C. Test Vectors

C.8. Test Vectors for Keyed Catena-Butterfly-Full

Lambda: 4
Garlic: 1
Associated data: (0 octets)
Password: 70 61 73 73 77 6f 72 64 (8 octets)
Salt: 73 61 6c 74 (4 octets)
UUID: FF FF FF FF FF FF FF FF (8 octets)
Key: 00 11 22 33 44 55 66 77 88 99 AA BB CC

DD EE FF

(16 octets)

Output: 76 e1 89 99 74 0e 0e ce 13 0b 03 63 e9

ff 65 f5 69 62 b5 0c 9f 21 97 5a 74 40

f3 0b 87 d1 22 ef f4 85 36 52 2a 17 16

ce da dd 72 be fc 23 11 e7 86 41 65 86

09 b7 8d 5a d8 19 27 96 76 e4 ec 94

(64 octets)

Lambda: 4
Garlic: 10
Associated data: 64 61 74 61 (4 octets)
Password: 70 61 73 73 77 6f 72 64 (8 octets)
Salt: 73 61 6c 74 (4 octets)
UUID: FF FF FF FF FF FF FF FF (8 octets)
Key: 00 11 22 33 44 55 66 77 88 99 AA BB CC

DD EE FF

(16 octets)

Output: be 1f 10 04 b7 af 7e 4e 32 29 48 6d b3

0e c0 bc 15 83 fc a8 10 e8 ad d8 3c 89

fe ab 58 22 4b f7 9e 36 b9 3b 98 00 d2

6f 0d a6 4a 75 8f 31 2f c9 8a 8d ef fb

90 d1 e4 45 35 a9 bd c3 26 4d 2a 3e

(64 octets)

71



Appendix D

Illustration of a BRG3
4

Output

��	
�

v00 v01 v02 v03 v04 v05 v06 v07

v40 v41 v42 v43 v44 v45 v46 v47

r0

r1

r2

r3

r4

Figure D.1.: A (3, 4)-bit-reversal graph.

72



Appendix E

Illustration of a DBG3
2

intput

����

Figure E.1.: A (3, 2)-double-butterfly graph.

73


	Introduction
	Preliminaries
	The Pebble Game
	Properties and Definitions
	Notational Conventions

	Catena – A Memory-Hard Password-Scrambling Framework
	Specification
	Functional Properties
	Security Properties
	Parameter Recommendation

	Security Analysis of the Catena Framework
	Password-Recovery Resistance.
	Pseudorandomness.

	Instances
	SaltMix
	Catena-Dragonfly
	Catena-Butterfly

	Security Analysis of Catena-BRG and Catena-DBG
	Resistance Against Side-Channel Attacks
	Memory-Hardness
	Pseudorandomness

	Design Discussion
	Default instances
	Justification of the Generic Design

	Usage
	Catena for Proof of Work
	Catena in Different Environments
	The Key-Derivation Function Catena-KG

	Lessons Learned: The Tweak
	Acknowledgement.
	Legal Disclaimer
	Bibliography
	BLAKE2b-1
	The Name
	Test Vectors
	Test Vectors for Catena-Dragonfly
	Test Vectors for Catena-Butterfly
	Test Vectors for Catena-Dragonfly-Full
	Test Vectors for Catena-Butterfly-Full
	Test Vectors for Keyed Catena-Dragonfly
	Test Vectors for Keyed Catena-Butterfly
	Test Vectors for Keyed Catena-Dragonfly-Full
	Test Vectors for Keyed Catena-Butterfly-Full

	Illustration of a BRG43
	Illustration of a DBG23

