The EARWORM Password Hashing Algorithm

Password Hashing Competition Submission Document (Round 1)

Daniel Franke <dfoxfranke@gmail.com>

March 31, 2014

Contents

1 Overview 1
1.1 Required statements L oL 1
1.2 Designgoals. 2
1.3 Non-goals 2

2 Specification 4
2.1 Notation 4
2.2 Encoding and decoding of natural numbers 5
2.3 The EWPRF function 5
2.4 The AESROUND function 6
2.5 The WORKUNIT function 7
2.6 The EARWORM function 8
2.7 The TESTARENA function 9
2.8 The PHS function and test vectors 10

3 Security analysis 11
3.1 Behavior as a pseudo-random function 11
3.2 Network timing attacks 0oL 11
3.3 Local timing attacks o oL 13
3.4 Reliance on AES and SHA-256 14

4 Performance analysis 15
4.1 Performance on CPUs 15
4.2 Performanceon GPUs 15
4.3 Performance on custom hardware 16

5 Usage considerations 16

1 Overview

1.1 Required statements
No deliberately-hidden weaknesses

The attacks against EARWORM discussed in this submission document are the
strongest that are known to its author. EARWORM contains no back doors or
other deliberately-hidden weaknesses.

Intellectual property statement

EARWORM is, and will remain, available worldwide on a royalty-free basis.
EARWORM utilizes SHA-256, whose implementation is subject to U.S. Patent
6,829,355. This patent was issued to The United States of America as repre-
sented by the National Security Agency on December 7, 2004. The National
Security Agency has made U.S. Patent 6,829,355 available royalty-free [1].

The designer is unaware of any other patent or patent application that covers
the use or implementation of EARWORM.

1.2 Design goals
One-wayness

It is a design goal of EARWORM that it should satisfy the standard cryptographic
notion of a one-way function. In practical terms, this means that a dictionary
attack should be the most efficient way to recover the preimage of an EARWORM
hash.

CPU-friendliness

It is a design goal of EARWORM that a commodity x86-64 PC, equipped with
support for the AES-NI instruction set but no other distinguishing features
(particularly, no GPGPU support), should constitute, as nearly as possible,
the maximally economically-efficient platform for computing EARWORM hashes,
measured on any of three axes:

1. Latency-fixed-cost: No device cheaper than a typical x86-64-based server
should be capable of performing a single EARWORM computation with
significantly less latency.

2. Throughput-fixed-cost: No device cheaper than a typical x86-64-based
server should be capable of performing EARWORM computations at signif-
icantly greater throughput.

3. Operating cost: No device should be capable of performing EARWORM
computations at significantly lower operating cost (including electricity,
cooling, depreciation, etc.) than a typical x86-64-based server.

Security at low time-cost

A password hash can be made expensive to attack by requiring significant time,
significant memory, or both; the defender must trade off computational bur-
den against security margin. EARWORM aims to maximize the flexibility of this
trade-off, particularly in the direction of low time and high memory. By taking
a large, pre-initialized array as an input, EARWORM can impose an arbitrarily-
high memory cost with an arbitrarily-low time cost, potentially requiring more
memory than it is possible to address in the duration of a single hash compu-
tation.

1.3 Non-goals
Second-preimage resistance

EARWORM is not designed to resist second-preimage or (by implication) collision
attacks.

Sequential memory-hardness

EARWORM is not a sequential memory-hard function as defined in [2]. It in-
stead derives its difficulty from its demand on memory bandwidth, or, in the
terminology of [3], “ROM-port hardness”.

Operation on constrained platforms

EARWORM is intended to be implemented on servers. Its dependence on a large
ROM and AES-NI makes it impractical to offload EARWORM computations to
constrained platforms such as browsers or smartphones.

Integration with hardware security modules

EARWORM provides no explicit support for integration with hardware security
modules (HSMs). This does not imply that no such integration is possible.
For example, [4] proposes a scheme for integrating a KDF with a YubiHSM*
in a manner that is independent of the choice of KDF. Given the existence of
this scheme, and the ease with which similar ones can be invented, I perceive
no benefit to complicating the design of EARWORM by explicitly accounting for
such considerations.

DDoS mitigation

Prevention of online dictionary attacks without denying service to legitimate
users remains an open problem. Rate-limiting login attempts on a per-user
basis makes it trivial to maliciously lock users out of their accounts. Rate-
limiting on a per-IP-address basis, already a dubious proposition in 2014, will
grow increasingly useless as the world migrates toward IPv6 and IP addresses
cease to become a scare resource.

Expensive password hashes like EARWORM, intended to frustrate offline at-
tacks, make online attacks even more problematic than before because they now
threaten to deny service to all of a site’s users by by exhausting the server’s
computational resources. EARWORM attempts no new contributions toward ad-
dressing this problem.

My comments on [5] (which I wrote prior to any of my work on password
hashing) suggest JavaScript-based proof-of-work systems as a possible solu-
tion. Any approach along these lines, should one be found practical, can treat
password-hashing schemes as an entirely orthogonal consideration.

Applicability as anything other than a password hash

EARWORM is strictly a password hash and is not designed to be suitable for any
other purpose, such as key derivation.

lhttps://www.yubico.com/products/yubihsm/

2 Specification

2.1 Notation

This specification deals in four sorts of mathematical object: natural numbers,
octet strings, arrays, and first-order functions.

Literal natural numbers will be represented in base ten and typeset in or-
dinary numerals. The notation x : N indicates that the variable x ranges over
the natural numbers. Operations defined on natural numbers include the basic
arithmetic functions of addition (+), subtraction (—), multiplication (-), division
(/), and modulus (mod). In all cases where subtraction is used, the difference
will always be positive. In all cases where division is used, the divisor will al-
ways evenly divide the dividend. Moduli are non-negative, i.e., n mod m ranges
from 0 to m — 1 inclusive. Natural numbers are defined with infinite range —
arithmetic operations do not overflow — but in practice no natural number
larger than 2'2% — 1 needs to be handled, and all arithmetic operations can be
implemented easily and efficiently on any 32-bit platform, without the need for
any sophisticated BIGNUM algorithms.

Literal octet strings will be represented in base sixteen and typeset in mono-
space with spaces between each octet. The notation x : B™ indicates that the
variable x ranges over the set of octet strings of length n. The notation x : B*
indicates that the variable = ranges over the set of all octet strings (including
the zero-length string). |x| denotes the length of an octet string x. Operations
defined on octet strings include bitwise exclusive-or (@), concatenation (||), and
slicing. Xor is defined only on octet strings of equal length. For slicing, the
notation x,, , represents the substring of x consisting of the mth thru nth
octets, zero-indexed and inclusive of both endpoints. The zeroth octet is the
one in the leftmost position of a string. Strings will never be decomposed into
units smaller than a single octet, so “bit-endianness” is left undefined. The
notation (00)™ represents an all-zero octet string of length n. The notation nil
represents the zero-length octet string.

Array elements are either natural numbers or octet strings. The notation
z : N[m][n] indicates that the variable x ranges over the set of m x n arrays
of natural numbers. The notation z[a][b], where 0 < a < m and 0 < b < n,
represents the natural number appearing in the ath row and bth column of that
array.

Function names will be represented in SMALL CAPS. The notation F(z,y)
represents the result of calling the function F with the arguments x and y.
Functions are pure, obviating any distinction between call-by-value and call-by-
reference.

The boundaries of for loops are inclusive of both endpoints. All other pseu-
docode constructs hopefully are self-explanatory.

2.2 Encoding and decoding of natural numbers

The function
BE32DEC(a : BY) : N
converts its argument to a natural number in the range 0..232 — 1 by interpreting

it in big-endian order. Examples follow.

BE32DEC(00 00 00 00) =0
BE32DEC(00 00 00 0f) = 15
BE32DEC(00 00 01 00) = 256
BE32DEC(ff ff £f f£f) = 4294967295
The function
BE32ENC(n : N) : B
is the inverse of BE32DEC, converting a natural number in the domain 0..232 — 1
to a big-endian octet string.
BE32ENC(0) = 00 00 00 00
BE32ENC(15) = 00 00 00 Of
BE32ENC(256) = 00 00 01 00
BE32ENC(4294967295) = ff ff ff ff

The functions

BE64DEC(a : B®) : N
BE128DEC(a : B'®) : N

are analogous to BE32DEC but take as input octet strings of length 8 and 16
respectively, returning output in the range 0..254 —1 and 0..2'2% — 1 respectively.
Their inverses are

BEG4ENC(n : N) : BS
BE128ENC(n : N) : B'6

2.3 The EWPRF function

The functions
SHA256(in : B*) : B2

and
HMAC-SHA256(key : B*,in : B*) : B*

are as defined in [6].
The function

PBKDFZPRF(}C@?J:B*,in:lB*):IB* (P : B*’ S B*7 C: I\I7 dkLen : N) .]BdkLen

is as defined in [7].
The function

EWPRF(secret : B, salt : B*, outlen : N) : Boutlen
is defined as

PBKDF2y ac—smHa256(secret, salt, 1, outlen)
where outlen must not exceed 32 - (232 — 1).

EWPRF (“passwd”, “salt”, 64) =
55 ac 04 6e 56 €3 08 9f ec 16 91 c2 25 44 b6 05
£9 41 85 21 6d de 04 65 e6 8b 9d 57 c2 0d ac bc
49 ca 9c cc £1 79 b6 45 99 16 64 b3 9d 77 ef 31
7c 71 b8 45 bl e3 0b d5 09 11 20 41 d3 al 97 83

where “passwd” and “salt” represent the octet strings
70 61 73 73 77 64

and
73 61 6¢c 74

respectively. This test vector comes from [8].

N.b.: In the reference implementation, EWPRF is just called PRF. The
EW prefix is included here in order to clearly disambiguate EWPRF from the
PBKDF2 parameter named PRF.

2.4 The AESRoOUND function

The AESROUND function computes a single internal round of AES encryption.
Before specifying it further, a slight digression to take care of some semantic
housekeeping is necessary. Inconveniently for our purposes, the AES specifica-
tion, FIPS-197, makes extensive use of impure “functions” which mutate their
arguments, which this document seeks to avoid dealing with. For example,
FIPS-197’s SUBBYTES function has no return value, but takes a pointer ar-
gument named state, and the 16-byte memory region to which it points gets
modified. The SHIFTROWS and M1xCOLUMNS functions behave similarly. Here
instead we let these functions return the updated state rather than modify their
argument in-place. Thus their new signatures are

SUBBYTES(state : B'®) : B!S
SHIFTROWS (state : B'°) : B'6
MixCoLUMNS(state : B'6) : B0

FIPS-197’s ADDROUNDKEY function is denoted here simply as xor (@).

The function
AESRoUND(roundKey : B'S block : B'°) : B'°

is defined as
MixCoLUMNS(SHIFTROWS(SUBBYTES(block))) @ roundKey.

The operation of AESROUND is identical to that of the Intel® AESENC instruc-
tion. The following test vector is taken from [9]:

AESROUND(5d 6e 6f 72 65 75 47 5b 29 79 61 68 53 28 69 48,
5d 47 53 54 72 6f 74 63 65 56 74 73 65 54 5b 7b) =
95 e5 d7 de 58 4b 10 8b c5 a3 db 9f 2f 1c 31 a8

2.5 The WORKUNIT function

The WORKUNIT function is the “meat” of EARWORM. Its specification depends
on three constants:

1. W is the “chunk width”. It determines how much internal parallelism is
available. This constant is set at W = 4.

2. L is the “chunk length”. With W, it determines how many sequential
memory accesses occur after each random access. This constant is set at
L = 64. The product LW is called the “chunk area”.

3. D is the “workunit depth”. It determines how many random memory
accesses occur per workunit. This constant is set at D = 256.

WORKUNIT takes as input a secret (passphrase), a salt, the desired output
length, a memory cost parameter, and a site-local parameter called the arena.
The arena is a large, randomly-initialized, read-only array of 2™t x L x W
128-bit blocks used as AES round keys. The necessity of storing the arena and
providing high-bandwidth access to it is what makes EARWORM hashes expensive
to compute.

WORKUNIT is defined here for secrets and salts of arbitrary length, but im-
plementations may impose length limits. The reference implementation of EAR-
WORM accepts secrets of unlimited length (up to the amount of addressable
memory on the target platform), but limits the salt to 36 octets. This lim-
itation allows it to avoid dynamic memory allocation within the WORKUNIT
function. Furthermore, due to a limitation inherited from PBKDF2, outlen
must not exceed 32 - (232 — 1). m_cost must not exceed 128; implementations
may, and likely must, impose a much smaller limit.

1: procedure WORKUNIT(
secret : B*,
salt : B*,

m_cost : N,
arena : B6[2m-cost|[L][W],
outlen : N)

2: var index_a : N

3: var index_b : N

4: var index_tmpbuf : B32

5: var scratchpad : BYS[W]

6: var scratchpad_tmpbuf : BW

7

8: index_tmpbuf < EWPRF(secret, 00|salt, 32)

o: index_a < BE128DEC(index_tmpbufy. 15) mod 2m-c5t
10: index_b < BE128DEC(index_tmpbu fi6.31) mod 2m-cost
11:

12: scratchpad_tmpbuf < EWPRF(secret, 01| salt, 16W)

13: for i from 0 to W — 1 do

14: scratchpad[i] < scratchpad_tmpbu figi. 16i+15

15: end for

16:

17: for d from 0 to D/2—1 do

18: for [from 0 to L — 1 do

19: for w from 0 to W — 1 do

20: seratchpad|w] +
AESROUND(arenalindex_a|[l][w], scratchpad|w))

21: end for

22: end for

23: index_a + BE128DEC(scratchpad[0]) mod 2m-¢05t

24: for [from 0 to L — 1 do

25: for w from 0 to W — 1 do

26: seratchpadw]
AESROUND(arenalindex_b|[l][w], scratchpad|w))

27: end for

28: end for

29: index_b < BE128DEC(scratchpad[0]) mod 2m-¢ost

30: end for

31:

32: for i from 0 to W — 1 do

33: scratchpad_tmpbu fi6; 16i+15 < scratchpad]i]

34: end for

35: return EWPRF(scratchpad_tmpbuf, 02||salt, outlen)

36: end procedure

2.6 The EARWORM function

The complete EARWORM function computes t_cost workunits with distinct salts,
and xor’s together their results.

1: procedure EARWORM(

secret : B*,
salt : B*,
t_cost : N,
m_cost : N,
arena : B¢[2m-cost][L|[W],
outlen : N ')
var out : Boutler
out (Oo)outlen
for ¢ from 0 to ¢_cost — 1 do
out < out & WORKUNIT(secret, BE32ENC(7)||salt,
m_cost, arena, outlen)

6: end for

7 return out

8: end procedure

t_cost must not exceed 2% — 1, outlen must not exceed 32 - (232 — 1), and
m_cost must not exceed 128. Implementations may impose further limits on
m_cost and the length of secret and salt; the reference implementation limits

salt to 32 octets.

2.7 The TESTARENA function

This section defines the function
TESTARENA (m_cost : N) : BLS[2m-cos*][L][W],

which is not per se a part of a EARWORM, but is used to provide test vectors.
The function

AES256ENCRYPT(key : B2 block : B'Y) : BC

is the complete AES-256 block cipher as defined by [10].
The constant
test_key : B2

is
64 6f 6e 2c 74 20 75 73 65 20 74 68 69 73 20 6b
65 79 20 69 6e 20 70 72 6f 64 75 63 74 69 6f 6e,

)

which is the ASCII encoding of “don’t use this key in production”.
Then, TESTARENA is defined as follows.
1: procedure TESTARENA(m-_cost : N)
2 var n: N
3: var arena : B®[2m-cost][L][W]
4: n <0
5 for i from 0 to 2™-¢°st — 1 do
6 for [from 0 to L — 1 do

7 for w from 0 to W — 1 do

8: arenali[l][w] + AES256ENCRYPT(test_key, BE128ENC(n))
9: n+<n+1

10: end for

11: end for

12: end for

13: return arena

14: end procedure

Essentially, we just populate the arena with an AES-CTR keystream.
WARNING: This function exists strictly for testing purposes! Production

use of an arena generated from a known seed will seriously degrade EARWORM’s

security.

2.8 The PHS function and test vectors

The function
PHS(secret : B*, salt : B*,t_cost : N;m_cost : N, outlen : N) : Boutlen

exists only to conform to the Password Hashing Contest’s API requirements and
to produce test vectors. It should not be used in production. It is defined as

EARWORM(secret, salt, t_cost, m_cost, TESTARENA(m_cost), outlen)

and test vectors are as follows:
PHS(“secret”, “salt”, 1,12,16) =
d6 62 fa 90 b9 a9 d7 d2 71 3a fb c0 9d ef e2 2f
PHS(“secret”, “salt”, 10000, 16, 16) =
2b 48 60 81 £7 d3 2c 19 97 67 ef 28 9e be dd c4
PHS(“secret”, “salt”, 10000, 16, 64) =
2b 48 60 81 £7 d3 2c 19 97 67 ef 28 9e be dd c4
40 £7 ef c7 9c ea 40 06 82 29 b4 70 65 2f 08 20
71 d2 0d 09 31 0f 94 Oc Ob 84 49 c7 23 15 94 b1l
al 5b 02 31 99 73 4a 21 f2 ec 84 1la da 9a da d3
PHS(nil,nil, 10000, 16, 16) =
e7 d6 6f 5d 9e £2 05 13 34 09 aa 25 ad ee f0 61
PHS(00 01 02 ... ££,00 01 02 ... 1f,10000,16,16) =
95 53 15 fc Oe 69 e2 08 £7 b5 68 d4 59 45 Ob 54

The strings “secret” and “salt” represent the (ASCII) octet strings
73 65 63 72 65 74

and
73 61 6¢ 74

respectively.

10

3 Security analysis

3.1 Behavior as a pseudo-random function

EARWORM has a second-preimage property which makes it trivially distinguish-
able from a random function. This property is a consequence of the way in
which HMAC deals with long keys, “long” meaning that their length exceeds
the output length of the underlying hash function. Ordinarily, HMAC is defined
by

HMACH(K,m) = H(K @ opad||H((K @ ipad) | m))

but for long K, it is instead
HMACH(K,m) = H(H(K) @ opad||H((H(K) @ ipad) | m)).
As a result, HMAC has the property that for long K,
HMACH(K,m) = HMACg (K, m).

PBKDF2-HMAC-SHA256 uses the password as an HMAC key and therefore
inherits this property. EARWORM likewise inherits it from PBKDF2.

It would have been trivial to avoid this property by specifying EWPRF such
that it passes SHA256(secret) rather than secret to PBKDF2. I have specifi-
cally chosen not to do this because second-preimage resistance is not a necessary
or useful property for password hashes. Any application of EARWORM which re-
lies on second-preimage resistance is an abuse, and patching over this particular
attack by adding an initial hashing step is unlikely to make anyone safer.

When a random oracle is substituted in place of HMAC-SHA256, I conjecture
EARWORM to be a weakly secure KDF according to the definition given in [11].
Providing a proof of this conjecture, with concrete bounds on the adversary’s
advantage, is a goal of future work.

3.2 Network timing attacks

At lines 9, 10, 23, and 29 of EARWORM’s WORKUNIT function, inder_a and
index_b are are assigned secret-dependent values and then used as array indices
at lines 20 and 26. These operations may take non-constant time as a result of
the host system’s cache architecture, opening up the possibility of timing-based
side-channel attacks.

Consider the following scenario. A user transmits his username and pass-
word to a server, tunneled within a TLS session or some other protocol provid-
ing a similar confidentiality assurance. The server hashes the password using
EARWORM, compares it to a stored authenticator, and sends the user a reply
indicating a successful login attempt. An attacker eavesdropping on this trans-
action measures how long it took the server to produce this reply. Later, the
attacker compromises the server steals the user’s stored password hash and as-
sociated parameters (the salt and arena). Let us consider how the attacker

11

can use his earlier timing measurement to speed up an offline dictionary attack
against the password.

Fach EARWORM workunit performs D secret-dependent memory accesses
which may take variable time, so a complete computation performs a total of
D -t_cost such accesses; we will call this number N. For simplicity, let us assume
the following:

1. The host system has only one level of cache, so each of these memory
accesses results in either a hit or a miss, with no other result possible.

2. All cache hits take the same amount of time. All cache misses take the
same amount of time.

3. Hashing the same password always results in the same pattern of hits and
misses.

4. Each memory access results in a miss with probability p. Therefore, the
number of misses during computation of a randomly-chosen password fol-
lows the binomial distribution B(N,p).

5. The attacker’s timing measurement is noiseless, so a single measurement
is sufficient to reveal precisely how many cache misses occurred.

These assumptions are not very realistic, but they all favor the attacker.

The attacker can use his knowledge of the number of cache misses which
occurred when the user submitted the correct password to speed up his attack
by aborting some EARWORM computations early, once too many or too few
cache misses have occurred in order for the guessed password to possibly be
correct. The algorithm that the attacker can apply here may be more-intuitively
understood in the context of the following balls-and-boxes probability problem.

Mallory is handed two bags, each of which contains NV balls, some of which
are white and the rest of which are black. The first bag contains n white balls;
the second contains m. Mallory knows a priori that each of the bags was filled
by randomly drawing from an infinite reservoir of balls that are white with
probability p. He wishes to determine whether m = n.

The number of white balls in the first bag is analogous to the number of
cache misses that are triggered when hashing the user’s correct password. The
number of white balls in the second bag is analogous to the number of cache
misses which occur when Mallory hashes a guessed password. If m # n, then
as soon as Mallory can conclude that this is the case he can abort that hash
computation because the guess cannot possibly be correct.

Mallory proceeds as follows. First, he counts all the balls in the first bag in
order to determine n; this represents taking the network timing measurement.
Then, he counts balls out of the second bag until one of the following stopping
conditions occurs.

e Case I: He has counted n + 1 white balls, and so concludes that m > n.

12

e Case II: He has counted N — n + 1 black balls, and so concludes that
m < n.

e Case III: He has emptied the bag without reaching cases I or II, and so
concludes that m = n.

Given particular values of n and m with n # m, the number of balls that
Mallory will count before stopping can be modeled by a negative hypergeometric
distribution. If m > n, then the distribution mean is (n + 1)(N + 1)(m + 1)7%,
and if m < n, then the distribution mean is (N —n+1)(N +1)(N —m+1)~L.
So, in general, the following function describes Mallory’s expected stopping time
for given values of N, n,m:

N oom=n

g(N,nym) = DUl m>n
(N7n+1)(N+1)

7N—m+1 m<n

Since it is given that n,m ~ B(N,p), Mallory’s overall expectation is charac-
terized by

FN.p) = iijo ()=o) [()oma =7 | amm).

Mallory’s percentage-wise time savings is then represented by

L fV.p)
o

For N = 256 (representative of a ¢t_cost = 1 computation) and p = .5, this
evaluates to approximately a mere 6.3% savings. As N and |p—.5| increase, the
savings decreases further, asymptotically approaching zero.

Mallory can do somewhat better if he is willing to accept some risk of im-
properly rejecting a correct password, but in this case, determining the ideal
strategy and how much time it saves seems to be very complicated. A conjec-
ture due to Colin Percival (personal correspondence) and the Stack Exchange
user “fedja”[12] is that if Mallory accepts a false-rejection rate of «, then as N
grows large, his expected time savings approaches y/a. For example, accepting
a 25% risk of rejecting a correct password provides an expected time savings of
50%.

3.3 Local timing attacks

I make no claims regarding EARWORM’s resistance to timing or other side-
channel attacks in situations where adversaries have the ability to manipulate
CPU cache lines while a EARWORM computation is in progress. Users concerned
about such attacks should avoid using EARWORM on systems that timeshare
hardware with untrusted parties.

13

3.4 Reliance on AES and SHA-256

Although EARWORM incorporates SHA-256 and the AES round function, the
properties of these functions which it relies on are weaker than those which
they were originally designed to ensure.

SHA-256 is designed to be, and as of this writing, is widely believed to be,
a collision-resistant hash function. However, EARWORM only relies on it to be
first-preimage-resistant. It is not necessary that a password hash be resistant
to collisions or second preimages, and indeed, due to the previously-discussed
issue concerning long HMAC keys, EARWORM is not. It is not apparent that the
ability to find SHA-256 collisions would lead to any sort of new attack against
EARWORM.

EARWORM relies on the AES round function to behave in a way that prevents
the main loop of the workunit function from being rewritten in order to consume
less memory bandwidth, i.e., to ensure that the algorithm described in the
pseudocode specification of WORKUNIT is the most efficient one possible. The
following definition of a shortcut-free function is an attempt to formalize this
property.

Let

fo(k :B" m:B"):B"

be a family of functions, assumed to be computable in time polynomial in n.
Let L : N, and let
gn(l: N, K :B"*[L],m : B") : B"

, defined only when [< L, compute [iterations of f,, i.e.,
gn(0, K,m) =m
gn(l, K,m) = fr (K[l —1],9,(1 — 1, K, m))

Consider the following game. The defender fixes n : N and L : N and then
selects
K < B[]

and
m < B"

uniformly at random. The defender outputs n, L, and K, keeping m secret.
The adversary then outputs a circuit description

h(m :B") : B".

{fn} is defined to be a shortcut-free family of functions if for all adversaries
A such that

1. A operates in probabilistic polynomial time, and

2. The circuit-size complexity of A’s output is o(L),

14

the probability that h(m) = g, (L, K, m) is bound by a negligible function e(n).

A particular function f,, may informally be said to be a shortcut-free function
if e(n) is “sufficiently” small.

The gist of this definition is that the attacker cannot do any precomputation
which usefully “compresses” K for the purpose of computing g,. The first
restriction on the set of adversaries asserts that the precomputation must be
tractable, and the second restriction asserts that it produces a useful result.

For a simple example of a function family which is not shortcut-free, consider
addition, where f, adds two integers modulo 2", so g, computes m + > K. In
this case the adversary can precompute » . K and output a circuit that performs
just the final addition of m. The complexity of this circuit can be O(logn)
and independent of L. In fact, this strategy works for any associative and
commutative function.

The security of EARWORM relies on the conjecture that AESROUND is a
shortcut-free function.

4 Performance analysis

4.1 Performance on CPUs

EARWORM'’s performance on CPUs supporting AES-NI is typically determined
almost entirely by memory bandwidth. Since computing one workunit requires
accessing 16 LW D bytes = 1MiB of arena memory, a typical system is able to
sustain one workunit computation per second per MiB/s of memory bandwidth,
minus a negligible amount of overhead imposed by the the initial and final
EWPRF computations. Multiple CPU cores may be needed in order to achieve
bandwidth saturation.

A system’s effective memory bandwidth is not always limited by the band-
width of the memory modules. My development system, for example, contains
an AMD SR5650 north bridge chipset, supporting quad-channel DDR3-1600
DIMMs. When all DIMM slots are in use, the memory modules should have
a maximum theoretical bandwidth of 51.2GiB/s. However, the CPU accesses
memory via a 16-bit-wide connection to a version 3.0 HyperTransport® bus,
which is capable of 5.2GiT/s (gibi-transfers per second), resulting in a 10.4GiB/s
bottleneck on EARWORM’s access to its arena. Running EARWORM on two cores
of the system’s 2.3GHz Opteron™ 6376 CPU is sufficient to achieve bus satu-
ration.

4.2 Performance on GPUs

GPUs typically have access to greater memory bandwidth than CPUs, making it
conceivable that they could outperform them. However, my (limited) attempts
at an efficient GPGPU implementation of EARWORM have so far been stymied
by an issue similar to the one that has historically plagued GPGPU implemen-
tations of berypt. The AES round function, in the way that it is typically

15

implemented, makes random accesses to each of four 1KiB tables. The current
generation of GPUs lack sufficient low-latency memory to provide all cores with
fast access to these tables. Although storing the tables in high-latency global
memory allows all cores to be utilized, the performance penalty due to latency
is severe.

The use of bitslicing techniques enables high-performance implementations
of AES that do not rely on table lookups [13][14][15]. EARWORM’s somewhat
irregular use of the AES round function means that these results are not im-
mediately applicable, but nonetheless further research is necessary to determine
whether or not bitslicing presents a viable means of efficiently implementing
EARWORM on GPUs.

As a consequence of EARWORM’s copious external parallelism, any break-
through in attacking EARWORM with GPUs is likely to be equally applicable
toward defensive GPU use.

4.3 Performance on custom hardware

FPGAs generally lack sufficient I/O bandwidth to be a viable means of attacking
EARWORM. Those FPGAs which are even potentially capable of matching the
performance of a commodity PC are also far more expensive than a PC.

Something approaching an ideal platform for attacking EARWORM would be
a graphics card augmented with AES-NI support. Putting an AES-NI circuit
on every core of a modern GPU would likely make it possible to fully utilize the
card’s memory bandwidth, thus outperforming a typical CPU-based platform
by roughly one order of magnitude.

5 Usage considerations

EARWORM’s need for a large site-local parameter (the arena) creates some chal-
lenges with respect to providing site administrators with an acceptable user ex-
perience. Loading a multi-gigabyte arena from disk into memory can take much
longer than an EARWORM computation itself, making it a practical necessity
that the arena be kept resident in main memory at all times. A straightforward
and programming-language-agnostic way to accomplish this would be to im-
plement EARWORM in a daemon listening on a loopback port or UNIX domain
socket, providing an RPC API via, e.g., FastCGI[16].

The need to keep backups of the entire arena or copy it from one server
to another can be alleviated by using a CSPRNG to generate it from a seed.
However, it then becomes very important to protect the seed from compromise,
because this would allow the attacker to make a favorable time/memory trade-
off by generating portions of the arena on-the-fly rather than storing the entire
thing. A suitably foolproof program design might involve reading a seed from
/dev/urandom or other system facility, using it to generate and store the arena,
and then printing the seed to the screen with instructions to write it down on
paper and store it in a physically-secure location.

16

References

[1]

W. T. Newbill, “The United States of America as represented by the
National Security Agency’s general license statement,” 2007. [Online].
Available: https://datatracker.ietf.org/ipr/858/

C. Percival, “Stronger key derivation via sequential memory-hard
functions,” 2009. [Online]. Available: http://www.tarsnap.com/scrypt/
scrypt.pdf

Solar Designer, “New developments in password hashing: ROM-port-
hard functions,” November 2012. [Online]. Available: http://www.
openwall.com /presentations/ZeroNights2012-New-In-Password-Hashing/
ZeroNights2012-New-In-Password-Hashing.pdf

Solar Designer and S. Marechal, “Password security: past,
present, and future,” December 2012. [Online]. Available: http://
www.openwall.com/presentations/Passwords12- The-Future- Of-Hashing/
Passwords12-The-Future-Of-Hashing.pdf

N. Lawson, “Final post on Javascript crypto,” Decem-
ber 2010. [Online]. Available: http://rdist.root.org/2010/11/29/
final-post-on-javascript-crypto

D. Eastlake and T. Hansen, “US secure hash algorithms (SHA and
HMAC-SHA),” Internet Engineering Task Force, RFC 4634, July 2006.
[Online]. Available: https://tools.ietf.org/html/rfc4634

B. Kaliski, “PKCS #5: Password-based crytography specification version
2.0,” Internet Engineering Task Force, RFC 2898, September 2000.
[Online]. Available: http://tools.ietf.org/html/rfc2898

S. Josefsson, “The scrypt password-based key derivation function,”
Internet Engineering Task Force, Internet-Draft, September 2012,
work in progress. [Online]. Available: https://tools.ietf.org/html/
draft-josefsson-scrypt-kdf-004#section-10

S. Gueron, Intel® Advanced Encryption Standard (AES) New Instruc-
tions Set, 3rd ed., Intel Corporation, September 2012. [Online].
Available: http://download-software.intel.com/sites/default /files/article/
165683 /aes-wp-2012-09-22-v01.pdf

“Announcing the Advanced Encryption Standard (AES),” National
Institute of Standards and Technology, FIPS 197, 2001. [Online].
Available: http://csre.nist.gov/publications/fips/fips197 /fips-197.pdf

F. F. Yao and Y. L. Yin, “Design and analysis of password-based key
derivation functions,” in Topics in Cryptology — CT-RSA 2005, 2005.
[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.85.4846&rep=repl&type=pdf#page=256

17

[12]

[15]

[16]

D. Franke, “Expected running time of a statistical
test procedure,” August 2013, Stack Exchange post. [On-
line]. Available: http://math.stackexchange.com/questions/469499/
expected-running-time-of-a-statistical-test-procedure

C. Rebeiro, D. Lelvakumar, and A. S. L. Devi, “Bitslice implementation of
AES,” Cryptology and Network Security, pp. 203—212, 2006.

D. J. Bernstein and P. Schwabe, “New AES software speed records,” in
Progress in Cryptology — INDOCRYPT 2008, November 2008. [Online].
Available: http://cr.yp.to/aes-speed/aesspeed-20080926.pdf

J. W. Bos, D. A. Osvik, and D. Stefan, “Fast implementations
of AES on various platforms,” 2009. [Online]. Available: http:
//eprint.iacr.org/2009/501.pdf

M. R. Brown, “FastCGI specification,” Open Market, Inc., Tech. Rep.,
April 1996. [Online]. Available: http://www.fastcgi.com/devkit/doc/
fegi-spec.html

18

